TRIGONOMETRY PROBLEMS SOLUTIONS

Bankers Point Explore The Intelligence

Trigonometry

Trigonometry is one of the most interesting chapters of Quantitative Aptitude section. Basically, it is a part of SSC and other bank exams syllabus. We will tell you the easy method to learn all the basics of trigonometry i.e. Trigonometric Ratios, facts and formulas.

Trigonometric Ratios

There are six trigonometric ratios. First three are the primary functions and last three are just the reciprocals of above three. Those are written as follows:

- $\operatorname{Sin} \theta$
- $\operatorname{Cos} \theta$
- $\operatorname{Tan} \theta$
- $\operatorname{Cot} \theta$
- $\operatorname{Sec} \theta$
- $\operatorname{Cosec} \theta$
$\operatorname{Sin} \theta=\frac{\text { Perpendicular }}{\text { Hypotenuse }}=\frac{A B}{A C}$
$\cos \theta=\frac{\text { Base }}{\text { Hypotenuse }}=\frac{B C}{A C}$
$\tan \theta=\frac{\text { Perpendicular }}{\text { Base }}=\frac{A B}{B C}$
$\operatorname{cosec} \theta=\frac{1}{\sin \theta}$
$\sec \theta=\frac{1}{\cos \theta}$
$\cot \theta=\frac{1}{\tan \theta}$

Some basic identites
$\sin ^{2} \theta+\cos ^{2} \theta=1$
$1+\tan ^{2} \theta=\sec ^{2} \theta$
$1+\cot ^{2} \theta=\operatorname{cosec}^{2} \theta$

θ	0°	30°	45°	60°	90°
$\operatorname{Sin} \theta$	0	$1 / 2$	$\frac{1}{\sqrt{2}}$	$\frac{\sqrt{3}}{2}$	1
$\operatorname{Cos} \theta$	1	$\frac{\sqrt{3}}{2}$	$\frac{1}{\sqrt{2}}$	$\frac{1}{2}$	0
$\operatorname{Tan} \theta$	0	$\frac{1}{\sqrt{3}}$	1	$\sqrt{3}$	Not Defined
$\operatorname{Cot} \theta$	Not Defined	$\sqrt{3}$	1	$\left.\frac{1}{\sqrt{3}}\right)$	0
$\operatorname{Cosec} \theta$	1	$\frac{2}{\sqrt{3}}$	$\sqrt{2}$	2	Not Defined
$\operatorname{Sec} \theta$	Not Defined	2	$\sqrt{2}$	$\frac{2}{\sqrt{2}}$	1

Signs of T-ratios in different quadrants:

Addition Formulae

$\operatorname{Sin}(\mathrm{A}+\mathrm{B})=\operatorname{Sin} \mathrm{A} \cos \mathrm{B}+\cos \mathrm{A} \sin \mathrm{B}$
$\operatorname{Cos}(A+B)=\cos A \cos B-\sin A \sin B$
$\operatorname{Tan}(\mathrm{A}+\mathrm{B})-\frac{\tan A+\tan B}{1-\tan A \tan B}$

Subtraction Formulae

$\operatorname{Sin}(A-B)=\sin A \cos B-\cos A \sin B$
$\cos (A-B)=\cos A \cos B+\sin A \sin B$
$\tan (\mathrm{A}-\mathrm{B})=\frac{\tan A-\tan B}{1+\tan A \tan B}$

Trigonometry Rules

Sine Rule : $\frac{\sin A}{a}=\frac{\sin B}{b}=\frac{\sin C}{c}=\frac{1}{2 R}$
Cosine Rule : $\operatorname{Cos} \mathrm{A}=\frac{b^{2}+c^{2}-a^{2}}{2 b c}$
$\operatorname{Cos} \mathrm{B}=\frac{a^{2}+c^{2}-h^{2}}{2 a c}$
$\operatorname{Cos} \mathrm{C}=\frac{a^{2}+b^{2}-c^{2}}{2 a b}$

Examples with Solution

Example 1: Find the value of:

$$
\frac{2 \tan 30^{\circ}}{1+\tan 230^{\circ}}
$$

Solution:

$$
\begin{aligned}
& \frac{2 \tan 30^{\circ}}{1+\tan 230^{\circ}}=\frac{(2 / \sqrt{ }(3)}{\left(1+\left(\frac{1}{\sqrt{3})}\right) 2\right)} \\
& \left.=`(2 / \text { sqrt } 3) /\left(1+(1 / \text { sqrt } 3)^{\wedge} 2\right)\right) \\
& =\frac{2 / \sqrt{3}}{1+(1 / \sqrt{3})^{2}}
\end{aligned}
$$

Solving above will give $=\sqrt{3}$
Example 2: If $\tan \theta=\frac{\sqrt{2}}{\sqrt{3}}$, then what will be the value of $\operatorname{Cos} \theta$?
Solution:
$\tan \theta=\frac{P}{B}$
Therefore, $P=\sqrt{2}$ and $B=\sqrt{ } 3$
Using Pythagoras Theorem, $\mathrm{H}^{2}=\mathrm{P}^{2}+\mathrm{B}^{2}$
$\mathrm{H}^{2}=2+3=5$
$\Rightarrow H=\sqrt{5}$
Therefore, $\operatorname{Cos}{ }^{`}$ theta` \(=\mathrm{B} / \mathrm{H}=` \mathrm{sqrt} 3 /\) sqrt5

Exercise

1) One angle of a triangle is 54° and another angle is $\frac{\pi}{4}$ radian. Find the third angle in centesimal unit.
a) 90
b) 60
c) 80
d) 30
e) None of these
2) In a circle of diameter 60 m , the length of a chord is 30 m . Find the length of the minor arc on one side of the chord. What is the length of the major arc?
a) 157.1 m
b) 160 m
c) 179 m
d) 199 m
e) None of these
3) Two arcs of two different circles are of equal lengths. If these arcs subtends angles of 45° and 60° at the centres of the circles. Find the ratio of the radii of the two circles.
a) $3: 4$
b) $5: 1$
c) $4: 3$
d) $6: 2$
e) None of these
4) $\operatorname{Sin} \frac{\pi}{14} \sin \frac{3 \pi}{14} \sin \frac{5 \pi}{14} \sin \frac{7 \pi}{14} \sin \frac{9 \pi}{14} \sin \frac{11 \pi}{14} \sin \frac{13 \pi}{14}=$
a) 0
b) 1
c) $\frac{1}{16}$
d) $\frac{1}{64}$
e) $\frac{1}{128}$
5) The maximum value of $\sin \left[x+\frac{\pi}{6}\right]+\cos \left[x+\frac{\pi}{6}\right.$ in the interval $\left(0,{ }^{\pi} \frac{\pi}{2}\right.$ is attained at $\mathrm{x}=$
a) $\frac{\pi}{2}$
b) $\frac{\pi}{3}$
c) $\frac{\pi}{6}$
d) $\frac{\pi}{12}$
e) None of these
6) If the circumradius of an isoceless triangle ABC is equal to $\mathrm{AB}(=\mathrm{AC})$, then angle A is equal to
a) $\frac{\pi}{2}$
b) $\frac{\pi}{3}$
c) $\frac{\pi}{6}$
d) $\frac{2 \pi}{3}$
e) None of these
7) In a $\triangle \mathrm{ABC}$, if $\cos \frac{A}{a}=\cos \frac{B}{b}=\cos \frac{C}{c}$ and the side $\mathrm{a}=2$, then area of the triangle is:
a) 1
b) 2
c) $\frac{\sqrt{3}}{2}$
d) $\sqrt{3}$
e) None of these
8) $\tan \left(\cos ^{-1} \mathrm{x}\right)=$?
a) $\sqrt{1-x^{2}}$
b) $\frac{\sqrt{1+x^{2}}}{x}$
c) $\frac{\sqrt{1-x^{2}}}{x}$
d) $\frac{x}{1+x^{2}}$
e) None of these
9) In $\triangle \mathrm{ABC}, \mathrm{B}=\frac{\pi}{3}$ and $\mathrm{C}=\frac{\pi}{4}$ Let D divide BC internally in the ratio $1: 3$, then $\frac{\sin (R A D)}{\sin (\angle C A D)}=$
a) $\frac{1}{3}$
b) $\frac{1}{\sqrt{6}}$
c) $\frac{1}{\sqrt{3}}$
d) $\sqrt{\frac{2}{3}}$
e) None of these
10) In any $\triangle \mathrm{ABC}, 2 \mathrm{ac} \sin \frac{A-B+C}{2}=$
a) $a^{2}+b^{2}-c^{2}$
b) $c^{2}+a^{2}-b^{2}$
c) $b^{2}-c^{2}-a^{2}$
d) $c^{2}-a^{2}-b^{2}$
e) None of these
11) In a $\triangle A B C, \angle C=\frac{\pi}{2}$, then $2(r+R)$ is equal to
a) $a+b$
b) $b+c$
c) $c+a$
d) $a+b+c$
e) None of these
12) If $\sin \mathrm{x}+\sin ^{2} \mathrm{x}=1$, then $\cos ^{2} \mathrm{x}+\cos ^{4} \mathrm{x}=$
a) 0
b) 1
d) 2
e) None of these
c) 1.5
13) BH is perpendicular to AC. Find x the length of BC.
a) 12.3
b) 2.3
c) 3.2
d) 13.2
e) None of these

14) $A B C$ is a right triangle with a right angle at A. Find x the length of $D C$?
a) 6.92
b) 9.26
c) 2.69
d) 9.62
e) None of these

15) In the figure below $A B$ and $C D$ are perpendicular to $B C$ and the size of angle $A C B$ is 31°. Find the length of segment BD.
a) 14.3
b) 13.4
c) 14.1
d) 3.14
e) None of these

16) A rectangle has dimensions 10 cm by 5 cm . Determine the measures of the angles at the point where the diagonals intersect.
a) 53°
b) 50°
c) 65°
d) 60°
e) None of these
17) The lengths of side $A B$ and side $B C$ of a scalene triangle $A B C$ are 12 cm and 8 cm respectively. The size of angle C is 59°. Find the length of side AC .
a) 4.11
b) 11.14
c) 41.10
d) 14.0
e) None of these
18) Calculate the length of the side x, given that $\tan \theta=0.4$
a) 10 cm
b) 8 cm
c) 9 cm
d) 6 cm
e) None of these

19) Calculate the length of the sidex, given than $\sin \theta=0.6$
a) 16 cm
b) 61 cm
c) 32 cm
d) 64 cm
e) None of these

20) From a point on the ground 25 feet from the foot of a tree, the angle of elevation of the top of the tree is 32°. Find to the nearest foot, the height of the tree?
a) 48 feet
b) 18 feet
c) 22 feet
d) 16 feet
e) None of these

21) In the figure below, $A B C D$ is a rectangle whose perimeter is 30 . The length of $B E$ is 12 . Find to the nearest degree, the measure of angle E ?
a) 25
b) 32
c) 38
d) 41
e) None of these

22) In the figure ABCD is a square whose side is 8 units. Find the length of diagonal AC ?
a) 11.9
b) 9.6
c) 9.9
d) 11.3
e) None of these

23) X is in quadrant 3 , approximate $\sin (2 x)$ if $\cos (x)=-0.2$
a) 0.39
b) 0.65
c) 0.35
d) 1.25
e) None of these
24) X is an angle in quadrant 3 and $\sin (x)=\frac{1}{3}$. Find $\sin (3 x)$ and $\cos (3 x)$
a) $\frac{24}{30}$
b) $\frac{29}{35}$
c) $\frac{23}{27}$
d) $\frac{23}{29}$
e) None of these

Solutions:

1. Option A

Let $\angle \mathrm{A}=54^{\circ}$ and $\angle \mathrm{B}=\frac{\pi}{4} \mathrm{rad}$
$\therefore \quad \mathrm{B}=45^{\circ}$
Thus, $\angle A+\angle B=99^{\circ}$

$$
\angle \mathrm{C}=180-99=81^{\circ} \quad\left(\angle \mathrm{A}+\angle \mathrm{B}+\angle \mathrm{C}=180^{\circ}\right)
$$

Now, since $90^{\circ} 100$ grade
$81^{\circ}=81 \times \frac{100}{90}=90$ grade

A
 B
 C

2. Option A
$2 \mathrm{r}=60 \mathrm{~m} \quad \mathrm{r}=30 \mathrm{~m}$
$\mathrm{OA}=\mathrm{OB}=\mathrm{AB}=30 \mathrm{~m}$
$\therefore \Delta \mathrm{OAB}$ is an equilateral triangle.
Thus, $\angle \mathrm{AOB}=60^{\circ}=\frac{\pi}{3} \mathrm{rad}{ }_{\pi}$
Now, since $\quad \mathrm{s}=\theta \quad \mathrm{r}=\frac{-}{3} \times 30$
$=10 \times 3.142$
$=31.42 \mathrm{~m}$ (approx.)
Thus the length of minor arc ACB $=31.42 \mathrm{~m}$ and the length of major arc $=(2 \pi r-$ minor arc)
$=2 \pi \times 30-31.42=157.1 \mathrm{~m}$ (approx.)
3. Option C
$45^{\circ}=\frac{\pi}{4} \mathrm{rad} \quad$ and $\quad 60^{\circ}=\frac{\pi}{3} \mathrm{rad}$
Let r_{1} and r_{2} be the radii of the two circles and s be the length of each arc.
$\therefore \mathrm{s}=r_{1} \frac{\pi}{4}=r_{2} \frac{\pi}{3} \quad(\mathrm{~s}=\mathrm{r} \theta)$
$\frac{r_{1}}{r_{2}}=\frac{4}{3}$
Hence the required ratio of radii $=4: 3$
4. Option D

Using $\sin (\pi-\theta)=\sin \theta$
$\sin \left[\frac{9 \pi}{14}\right]=\sin \left[\frac{5 \pi}{14}\right]$
$\sin \left[\frac{11 \pi}{14}\right]=\sin \left[\frac{3 \pi}{14}\right]$
$\sin \left[\frac{13 \pi}{14}\right]=\sin \left[\begin{array}{c}14 \\ \pi \\ 14\end{array}\right]$
Also, $\sin \left[\frac{7 \pi}{14}\right]=\sin \left[\frac{\pi}{2}\right]=1$
$\therefore \operatorname{Sin} \frac{\pi}{14} \sin \frac{14 \pi}{\frac{34}{3 \pi}} \sin \frac{5 \pi}{\frac{14}{5 \pi}} \sin \frac{7 \pi}{14} \sin \frac{9 \pi}{14} \sin \frac{11 \pi}{14} \sin \frac{13 \pi}{14}$

$\left.\begin{array}{lll}7 & 7 & 7\end{array}\right)$

$$
\begin{aligned}
& =-\left(\cos \frac{\pi}{4} \cos ^{\frac{2 \pi}{7}} \cos ^{\frac{4 \pi}{7}}\right)^{2} \quad\left[\cos \left[\begin{array}{c}
3 \pi \\
7
\end{array}\right]=\cos \left[\pi-\frac{4 \pi}{7}\right]=-\cos \left[\frac{4 \pi}{7}\right]\right. \\
& =\left(\frac{\sin \frac{4-\pi}{7}}{2^{3} \sin \frac{\pi}{7}}\right)^{7}
\end{aligned}
$$

$$
=\left(\frac{\sin \frac{8 \pi}{7}}{8 \sin \frac{\pi}{7}}\right)^{2}
$$

$\frac{1}{64}[\sin (8 \pi / 7)=\sin (\pi+\pi / 7)=-\sin (\pi / 7)]$
5. Option D
$\sin \left[x+\frac{\pi}{6}\right]+\cos \left[x+\frac{\pi}{6}\right]=\sqrt{z} \quad\left[\frac{1}{\sqrt{2}} \sin \left(x+\frac{\pi}{6}\right)+\underset{\sqrt{2}}{\frac{1}{2}} \cos \left(x+\frac{\pi}{6}\right)\right.$
$=\sqrt{\mathrm{Z}}\left[\sin \left(\mathrm{x}+\frac{\pi}{6}\right) \cos \frac{\pi}{4}+\cos \left(\mathrm{x}+\frac{\pi}{6}\right) \sin \frac{\pi}{4}\right]$
$=\sqrt{2}\left[\sin \left(x+\frac{5 \pi}{12}\right)\right]$
This is maximum when $\sin \left(x+\frac{5 \pi}{12}\right)=1$
$x+\frac{-5 \pi}{12}=\frac{\pi}{2}$
$\mathrm{X}=\frac{\pi}{12}$
6. Option D
$\operatorname{Sin} \mathrm{B}=\frac{b}{2 R}$

$$
=\frac{A C}{2}
$$

$=\frac{R}{2 R} \quad[$ Given $\mathrm{AB}=\mathrm{AC}=\mathrm{R}]$
$=\frac{1}{2}$
$B=\frac{\pi}{6}$ or $\frac{5 \pi}{6}$
But, when $\mathrm{B}=\frac{5 \pi}{6}, \mathrm{C}=\frac{5 \pi}{6}[\mathrm{AB}=\mathrm{AC} \Rightarrow \mathrm{B}=\mathrm{C}]$
$\Rightarrow \mathrm{B}+\mathrm{C}_{5 \pi} \pi$
So, $\mathrm{B}=\frac{\pi}{6}$ not possible
$\therefore \mathrm{B}=\frac{\pi^{6}}{6}$
$\mathrm{C}=\frac{\pi}{6} \quad[\mathrm{AB}=\mathrm{AC} \Rightarrow \mathrm{B}=\mathrm{C}]$
$\mathrm{A}=\pi-\left[\frac{\pi}{6}+\frac{\pi}{6}\right]$
$\mathrm{A}=\frac{2 \pi}{3}$

7. Option D

$\cos \frac{A}{a}=\cos \frac{B}{b}=\cos \frac{C}{c}$ [Given]
$\cos A /(2 R \sin A)=\cos B /(2 R \sin B)=\cos C /(2 R \sin C)$
$\cot A=\cot B=\cot C$
$\mathrm{A}=\mathrm{B}=\mathrm{C}$
$\triangle \mathrm{ABC}$ is equilateral.
Area $=\frac{\sqrt{3}}{4} a^{2}=\sqrt{3}$
8. Option C

$$
\begin{aligned}
& \tan \left(\cos ^{-1} \mathrm{x}\right)=\frac{\sin \left(\cos ^{-1} \mathrm{x}\right)}{\cos \left(\cos ^{-1} \mathrm{x}\right)} \\
& =\frac{\sqrt{1-x^{2}}}{x}
\end{aligned}
$$

9. Option B

$$
\frac{B D}{D C}=\frac{1}{3} \quad[\text { Given }]
$$

From $\triangle \mathrm{ABD}$,
$\mathrm{BD} / \sin (\angle \mathrm{BAD})=\mathrm{AD} / \sin (\pi / 3) \ldots(1)$
From $\triangle \mathrm{ACD}$,
$\mathrm{DC} / \sin (\angle \mathrm{CAD})=\mathrm{AD} / \sin (\pi / 4)$
Now, divide (1) by (2) and use $\mathrm{BD} / \mathrm{DC}=1 / 3$
$\Rightarrow \sin (\angle \mathrm{BAD}) / \sin (\angle \mathrm{CAD})=\frac{1}{\sqrt{6}}$
10. Option B
$2 \operatorname{ac} \sin \frac{A-B+C}{2}=2 \operatorname{acsin} \frac{A+B+C-2 B}{2}$
$=2 \operatorname{ac} \sin \frac{180^{\circ}-2 B}{2}$
$=2 \mathrm{ac} \sin \left(90^{\circ}-\mathrm{B}\right)$
$=2 \mathrm{ac} \cos \mathrm{B}$
$=c^{2}+a^{2}-b^{2}$
11. Option A
$\angle \mathrm{C}=\frac{\pi}{2} \Rightarrow \mathrm{R}=\mathrm{c} /(2 \sin \mathrm{C})=\mathrm{c} / 2$
Now, $2(\mathrm{r}+\mathrm{R})=2 \mathrm{r}+2 \mathrm{R}$
$=2(\mathrm{~s}-\mathrm{c}) \tan (\mathrm{C} / 2)+2(\mathrm{c} / 2)$
$=2 \mathrm{~s}-2 \mathrm{c}+\mathrm{c}$
$=2 \mathrm{~s}-\mathrm{c}$
$=\mathrm{a}+\mathrm{b}$
12. Option B
$\sin \mathrm{x}+\sin ^{2} \mathrm{x}=1 \quad$ [Given]
$\Rightarrow \sin \mathrm{x}=1-\sin ^{2} \mathrm{x}=\cos ^{2} \mathrm{x}$
$\therefore \cos ^{2} \mathrm{x}+\cos ^{4} \mathrm{x}=\sin \mathrm{x}+\sin ^{2} \mathrm{x}=1$
13. Option A

BH perpendicular to AC means that triangles ABH and HBC are right triangles.
Hence
$\tan \left(39^{\circ}\right)=11 / \mathrm{AH}$ or $\mathrm{AH}=11 / \tan \left(39^{\circ}\right)$
$\mathrm{HC}=19-\mathrm{AH}=19-11 / \tan \left(39^{\circ}\right)$
Pythagora's theorem applied to right triangle $\mathrm{HBC}: 11^{2}+H C^{2}=x^{2}$
Solve for x and substitute $\mathrm{HC}: \mathrm{x}=\operatorname{sqrt}\left[11^{2}+\left(19-11 / \tan \left(39^{\circ}\right)^{2}\right]\right.$
$=12.3$
14. Option C

Since angle A is right, both triangles ABC and ABD are right and therefore we can apply Pythagora's theorem.
$14^{2}=10^{2}+A D^{2}, 16^{2}=10^{2}+A C^{2}$
Also $\mathrm{x}=\mathrm{AC}-\mathrm{AD}$
$=\operatorname{sqrt}\left(16^{2}-10^{2}\right)-\operatorname{sqrt}\left(14^{2}-10^{2}\right)=2.69$

15. Option B

Use right triangle ABC to write : $\tan \left(31^{\circ}\right)=6 / \mathrm{BC}$, solve : $\mathrm{BC}=6 / \tan \left(31^{\circ}\right)$
Use Pythagora's theorem in the right triangle $B C D$ to write:
$9^{2}+B C^{2}=B D^{2}$
Solve above for BD and substitute $\mathrm{BC}: \mathrm{BD}=\operatorname{sqrt}\left[9+\left(6 / \tan \left(31^{\circ}\right)^{2}\right]\right.$
$=13.4$

16. Option A

The diagram below shows the rectangle with the diagonals and half one of the angles with size x .
$\tan (x)=\frac{5}{2.5}=2, x=\arctan (2)$
larger angle made by diagonals $2 x=2 \arctan (2)=127^{\circ}$
smaller angle made by diagonals $1802 \mathrm{x}=53^{\circ}$

17. Option D

Let x be the length of side AC. Use the cosine law $12^{2}=8^{2}+x^{2}-2 \times 8 \times x \times \cos \left(59^{\circ}\right)$
Solve the quadratic equation for $\mathrm{x}: \mathrm{x}=14.0$ and $\mathrm{x}=-5.7$
x cannot be regative and therefore the solution is $\mathrm{x}=14.0$
18. Option D
$\tan \theta=\frac{\text { opposite side }}{\text { adjacent side }}$
$0.4=\frac{x}{15}$
$\mathrm{x}=0.4 \times 15=6 \mathrm{~cm}$
19. Option A
$\operatorname{Sin} \theta=\frac{\text { oppasite }}{\text { hypoteruse }}$
$0.6=\frac{12}{A B}$
$A B=\frac{12}{0.6}$
$=20 \mathrm{~cm}$
Using Pythagoras theorem:
$\mathrm{x}=\sqrt{20^{2}-12^{2}}$
$=16 \mathrm{~cm}$
20. Option D

$\tan 32=\frac{x}{2_{x}^{5}}$
$.6249=\frac{x^{5}}{25}$
$x=15.6225=16$ feet
21. Option A

The opposite sides of a rectangle are equal. If the perimeter is 30 , the sides are as shown above.

Use trigonometry to find x :
$\sin \mathrm{x}=\frac{5}{12}$
$\sin \mathrm{x}=.4167$
$x=24.6=25$
22. Option D

The diagonal of a square creates two $45^{\circ}-45^{\circ}-90^{\circ}$ triangles. You have options for a solution : the Pythagorean Theorem

$$
\sin 45^{\circ}=\frac{8}{x}
$$

$\mathrm{x}=11.3$
23. Option A

$$
\begin{aligned}
& \sin (2 x)=2 \sin (x) \cos (x) \\
& \sin x=-\operatorname{sqrt}\left[1-(-0.2)^{2}\right] \\
& \sin (2 x)=2\left[-\operatorname{sqrt}\left[1-(-0.2)^{2}\right]\right. \\
& =0.39
\end{aligned}
$$

24. Option C

$$
\begin{aligned}
& \sin (3 x)=3 \sin x-4 \sin ^{3} x \\
= & 3\left[\frac{1}{3}-4\left[\begin{array}{l}
1 \\
3
\end{array}\right]^{3}\right. \\
- & =23
\end{aligned}
$$

