TRIGONOMETRY PROBLEMS SOLUTIONS

Bankers Point Explore The Intelligence

bankersway.com bankerspoint.org

Trigonometry

Trigonometry is one of the most interesting chapters of Quantitative Aptitude section. Basically, it is a part of SSC and other bank exams syllabus. We will tell you the easy method to learn all the basics of trigonometry i.e. Trigonometric Ratios, facts and formulas.

Trigonometric Ratios

There are six trigonometric ratios. First three are the primary functions and last three are just the reciprocals of above three. Those are written as follows:

- Sin θ
- Cos θ
- Tan θ
- Cot θ
- Sec θ
- Cosec θ

$$Sin \theta = \frac{Perpendicular}{Hypotenuse} = \frac{AB}{AC}$$

$$\cos \theta = \frac{Base}{Hypotenuse} = \frac{BC}{AC}$$

$$\tan \theta = \frac{Perpendicular}{Base} = \frac{AR}{BC}$$

$$\csc \theta = \frac{1}{\sin \theta}$$

$$\sec \theta = \frac{1}{\cos \theta}$$

$$\cot \theta = \frac{1}{\tan \theta}$$

Some basic identites

$$sin^{2} \theta + cos^{2} \theta = 1$$

$$1 + tan^{2} \theta = sec^{2} \theta$$

$$1 + cot^{2} \theta = cosec^{2} \theta$$

θ	0°	30°	45°	60°	90°
Sin θ	0	1/2	$\frac{1}{\sqrt{2}}$	$\frac{\sqrt{3}}{2}$	1
Cos θ	1	$\frac{\sqrt{3}}{2}$	$\frac{1}{\sqrt{2}}$	$\frac{1}{2}$	0
Tan θ	0	$\frac{1}{\sqrt{3}}$	1	√3	Not Defined
Cot θ	Not Defined	√3	1	$\frac{1}{\sqrt{3}}$	0
Cosec θ	1	$\frac{2}{\sqrt{3}}$	√2	2	Not Defined
Sec θ	Not Defined	2	$\sqrt{2}$	$\frac{2}{\sqrt{2}}$	1

Signs of T-ratios in different quadrants:

Addition Formulae

$$Sin (A + B) = Sin A cos B + cos A sin B$$

$$Cos (A + B) = cos A cos B - sin A sin B$$

$$Tan (A + B) - \frac{\tan A + \tan B}{1 - \tan A \tan B}$$

Subtraction Formulae

$$Sin (A - B) = sin A cos B - cos A sin B$$

$$\cos (A - B) = \cos A \cos B + \sin A \sin B$$
$$\tan (A - B) = \frac{\tan A - \tan B}{1 + \tan A \tan B}$$

Trigonometry Rules

Sine Rule:
$$\frac{\sin A}{a} = \frac{\sin B}{b} = \frac{\sin C}{c} = \frac{1}{2R}$$

Cosine Rule : Cos A =
$$\frac{b^2 + c^2 - a^2}{2bc}$$

$$\cos B = \frac{a^2 + c^2 - b^2}{2ac}$$

Cos C =
$$\frac{a^2 + b^2 - c^2}{2ab}$$

Examples with Solution

Example 1: Find the value of:

$$\frac{2\tan 30^{\circ}}{1+\tan 2 30^{\circ}} = \frac{(2/\sqrt{(3)})}{(1+(\frac{1}{\sqrt{33}})2)}$$
= \(\cdot(2/\sqrt3)/(1+(1/\sqrt3)^2)\)
=\(\frac{2/\sqrt3}{1+(1/\sqrt3)^2}\)
Solving above will give = \(\sqrt{3}\)

Example 2: If $\tan \theta = \frac{\sqrt{2}}{\sqrt{3}}$, then what will be the value of $\cos \theta$?

$$\tan \theta = \frac{\sqrt{p}}{B}$$

Therefore, $P = \sqrt{2}$

Therefore,
$$P = \sqrt{2}$$
 and $B = \sqrt{3}$
Using Pythagoras Theorem, $H^2 = P^2 + B^2$

$$H^2 = 2 + 3 = 5$$

$$\Rightarrow$$
 H = $\sqrt{5}$

Therefore, Cos `theta` = B/H = `sqrt3/ sqrt5`

Exercise

- 1) One angle of a triangle is 54° and another angle is $\frac{\pi}{4}$ radian. Find the third angle in centesimal unit.
 - a) 90

b) 60

c) 80

d) 30

e) None of these

d)
$$\sqrt{\frac{2}{3}}$$

e) None of these

10) In any $\triangle ABC$, $2ac \sin \frac{A-B+C}{2} =$ a) $a^2 + b^2 - c^2$ b) $c^2 + a^2 - b^2$ e) None of these

a)
$$a^2 + b^2 - c^2$$

b)
$$c^2 + a^2 - b^2$$

c)
$$b^2 - c^2 - a^2$$

d)
$$c^2 - a^2 - b^2$$

11) In a $\triangle ABC$, $\angle C = \frac{\pi}{2}$, then 2 (r + R) is equal to

$$a) a + b$$

$$b) b + c$$

$$c) c + a$$

$$d) a + b + c$$

e) None of these

12) If $\sin x + \sin^2 x = 1$, then $\cos^2 x + \cos^4 x =$

e) None of these

13) BH is perpendicular to AC. Find x the length of BC.

e) None of these

14) ABC is a right triangle with a right angle at A. Find x the length of DC?

- 15) In the figure below AB and CD are perpendicular to BC and the size of angle ACB is 31°. Find the length of segment BD.
 - a) 14.3

b) 13.4

c) 14.1

d) 3.14

e) None of these

16) A rectangle has dimensions 10 cm by 5 cm. Determine the measures of the angles at the point where the diagonals intersect.

a) 53°

b) 50°

c) 65°

d) 60°

e) None of these

17) The lengths of side AB and side BC of a scalene triangle ABC are 12 cm and 8 cm respectively. The size of angle C is 59°. Find the length of side AC.

a) 4.11

b) 11.14

c)41.10

d) 14.0

e) None of these

18) Calculate the length of the side x, given that $\tan \theta = 0.4$

a) 10 cm

b) 8 cm

c) 9 cm

d) 6 cm

e) None of these

19) Calculate the length of the sidex, given than $\sin \theta = 0.6$

a) 16 cm

b) 61 cm

c) 32 cm

d) 64 cm

e) None of these

- 20) From a point on the ground 25 feet from the foot of a tree, the angle of elevation of the top of the tree is 32° . Find to the nearest foot, the height of the tree?
 - a) 48 feet
- b) 18 feet
- c) 22 feet

- d) 16 feet
- e) None of these

- 21) In the figure below, ABCD is a rectangle whose perimeter is 30. The length of BE is 12. Find to the nearest degree, the measure of angle E?
 - a) 25

b) 32

c) 38

d) 41

e) None of these

- 22) In the figure ABCD is a square whose side is 8 units. Find the length of diagonal AC?
 - a) 11.9
- b) 9.6

c) 9.9

- d) 11.3
- e) None of these

- 23) X is in quadrant 3, approximate $\sin (2 x)$ if $\cos (x) = -0.2$
 - a) 0.39

b) 0.65

c) 0.35

d) 1.25

- e) None of these
- 24) X is an angle in quadrant 3 and $\sin(x) = \frac{1}{3}$. Find $\sin(3x)$ and $\cos(3x)$
 - a) $\frac{24}{30}$

b) $\frac{29}{35}$

d) $\frac{23}{29}$

e) None of these

Solutions:

Option A 1.

Let
$$\angle A = 54^{\circ}$$
 and $\angle B = \frac{\pi}{4}$ rad

$$\therefore$$
 B = 45°

Thus,
$$\angle A + \angle B = 99^{\circ}$$

$$\therefore$$
 $\angle C = 180 - 99 = 81^{\circ}$

$$(\angle A + \angle B + \angle C = 180^{\circ})$$

Now, since
$$90^{\circ}$$
 100 grade $81^{\circ} - 81 \times \frac{100}{100} = 00$ grade

:
$$\angle C = 180 - 99 = 81^{\circ}$$

Now, since 90° 100 grade $81^{\circ} = 81 \times \frac{100}{90} = 90$ grade

2. Option A

$$2r = 60 \text{ m}$$
 $r = 30 \text{ m}$
 $OA = OB = AB = 30 \text{ m}$
 $\therefore \Delta OAB$ is an equilateral triangle.
Thus, $\angle AOB = 60^{\circ} = \frac{\pi}{3} \text{ rad}$
Now, since $s = \theta$ $r = \frac{\pi}{3} \times 30$

$$= 10 \times 3.142$$

$$= 31.42 \text{ m (approx.)}$$

Thus the length of minor arc ACB = 31.42 m and the length of major arc = $(2 \pi r - minor arc)$

=
$$2 \pi \times 30 - 31.42 = 157.1 \text{ m (approx.)}$$

3. Option C

$$45^\circ = \frac{\pi}{4} \text{ rad}$$
 and $60^\circ = \frac{\pi}{3} \text{ rad}$

Let r_1 and r_2 be the radii of the two circles and s be the length of each arc. \therefore s = r_1 $\frac{\pi}{} = r_2$ $\frac{\pi}{}$ (s = $r\theta$)

$$\therefore s = r_1 \quad \frac{n}{4} = r_2 \frac{n}{3} \quad (s = r_1)$$

Hence the required ratio of radii = 4:3

4. Option D

Using
$$\sin (\pi - \theta) = \sin \theta$$

$$\sin \left[\frac{9\pi}{14}\right] = \sin \left[\frac{5\pi}{14}\right]$$

$$\sin \left[\frac{11\pi}{14}\right] = \sin \left[\frac{3\pi}{14}\right]$$

$$\sin \left[\frac{13\pi}{14}\right] = \sin \left[\frac{\pi}{14}\right]$$
Also, $\sin \left[\frac{7\pi}{14}\right] = \sin \left[\frac{\pi}{14}\right] = 1$

$$\therefore \sin \frac{\pi}{14} \sin \frac{\pi}{14} \sin \frac{5\pi}{14} \sin \frac{9\pi}{14} \sin \frac{11\pi}{14} \sin \frac{13\pi}{14}$$

$$= \left[\sin \frac{\pi}{14} \sin \frac{3\pi}{14} \sin \frac{5\pi}{14} \sin \frac{9\pi}{14} \sin \frac{11\pi}{14} \sin \frac{13\pi}{14}\right]$$

$$= \left[\sin \frac{\pi}{14} \sin \frac{3\pi}{14} \sin \frac{5\pi}{14} \sin \frac{9\pi}{14} \sin \frac{11\pi}{14} \sin \frac{13\pi}{14}\right]$$

$$= \left(\cos \frac{\pi}{14} \cos \frac{2\pi}{14} \cos \frac{2\pi}{14}\right)$$
[Using $\sin \theta = \cos(\frac{\pi}{14} - \theta)$]
$$= \left(\cos \frac{\pi}{14} \cos \frac{2\pi}{14} \cos \frac{3\pi}{14}\right)$$

$$= -\left(\cos \frac{\pi}{7}\cos \frac{2\pi}{7}\cos \frac{4\pi}{7}\right)^{2} \left[\cos \left[\frac{3\pi}{7}\right] = \cos \left[\pi - \frac{4\pi}{7}\right] = -\cos \left[\frac{4\pi}{7}\right]$$

$$-\left(\frac{\sin \frac{2\pi}{7}}{2^{3}\sin \frac{\pi}{7}}\right)^{7}$$

$$= \left(\frac{\sin\frac{8\pi}{7}}{8\sin\frac{\pi}{7}}\right)^2$$

$$\frac{1}{64} \left[\sin (8\pi/7) = \sin (\pi + \pi/7) = -\sin (\pi/7) \right]$$

5. Option D
$$\sin\left[x + \frac{\pi}{-}\right] + \cos\left[x + \frac{\pi}{-}\right] = \sqrt{2} \qquad \left[\frac{1}{-}\sin\left(x + \frac{\pi}{-}\right) + \frac{1}{-}\cos\left(x + \frac{\pi}{-}\right)\right]$$

$$= \sqrt{2}\left[\sin\left(x + \frac{\pi}{-}\right)\cos\frac{\pi}{-} + \cos\left(x + \frac{\pi}{-}\right)\sin\frac{\pi}{-}\right]$$

$$= \sqrt{2}\left[\sin\left(x + \frac{5\pi}{-12}\right)\right]$$
This is maximum when $\sin\left(x + \frac{5\pi}{-12}\right) = 1$

$$\begin{array}{c}
\frac{5\pi}{12} = \frac{\pi}{2} \\
x = \frac{\pi}{12}
\end{array}$$

Sin B =
$$\frac{b}{2R}$$

= $\frac{AC}{2}$
= $\frac{R}{2R}$ [Given AB = AC = R]
= $\frac{1}{2}$
B = $\frac{\pi}{6}$ or $\frac{5\pi}{6}$

But, when
$$B = \frac{5\pi}{6}$$
, $C = \frac{5\pi}{6}$ [AB = AC \Rightarrow B = C]
 \Rightarrow B + C $> \pi$
So, B = $\frac{\pi}{6}$ not possible
 \therefore B = $\frac{\pi}{6}$

$$C = \frac{\pi}{6} \left[AB = AC \Rightarrow B = C \right]$$

$$A = \pi - \left[\frac{\pi}{6} + \frac{\pi}{6} \right]$$

$$A = \frac{2\pi}{3}$$

7. Option D

$$\cos \frac{A}{a} = \cos \frac{B}{b} = \cos \frac{C}{c} \text{ [Given]}$$

$$\cos A/(2R \sin A) = \cos B/(2R \sin B) = \cos C/(2R \sin C)$$

$$\cot A = \cot B = \cot C$$

$$A = B = C$$

$$\Delta ABC \text{ is equilateral.}$$

$$Area = \frac{\sqrt{3}}{4} a^2 = \sqrt{3}$$

8. Option C

$$\tan(\cos^{-1} x) = \frac{\sin(\cos^{-1} x)}{\cos(\cos^{-1} x)}$$
$$= \frac{\sqrt{1 - x^2}}{x}$$

9. Option B

BD/sin (
$$\angle$$
BAD) = AD/sin (π /3) ... (1)

From $\triangle ACD$,

$$DC/\sin(\angle CAD) = AD/\sin(\pi/4)...(2)$$

Now, divide (1) by (2) and use
$$BD/DC = 1/3$$

$$\Rightarrow \sin(\angle BAD) / \sin(\angle CAD) = \frac{1}{\sqrt{6}}$$

10. Option B

2 ac sin
$$\frac{A - B + C}{2}$$
 = 2 ac sin $\frac{A + B + C - 2B}{2}$

= 2 ac sin
$$\frac{180^{\circ} - 2R}{2}$$

= 2 ac sin (90° - B)
= 2 ac cos B
= $c^2 + a^2 - b^2$

11. Option A

$$\angle C = \frac{\pi}{2} \Rightarrow R = c/(2 \sin C) = c/2$$

Now, $2 (r + R) = 2 r + 2 R$
 $= 2 (s - c) \tan (C/2) + 2 (c/2)$
 $= 2s - 2c + c$
 $= 2s - c$
 $= a + b$

12. Option B

$$\sin x + \sin^2 x = 1$$
 [Given]
 $\Rightarrow \sin x = 1 - \sin^2 x = \cos^2 x$
 $\therefore \cos^2 x + \cos^4 x = \sin x + \sin^2 x = 1$

13. Option A

BH perpendicular to AC means that triangles ABH and HBC are right triangles. Hence

tan (39°) = 11/AH or AH = 11/tan (39°)
HC = 19 - AH = 19 - 11/tan (39°)
Pythagora's theorem applied to right triangle HBC :
$$11^2 + HC^2 = x^2$$

Solve for x and substitute HC : $x = \text{sqrt} \left[11^2 + (19 - 11/\tan(39^\circ)^2)\right]$
= 12.3

14. Option C

Since angle A is right, both triangles ABC and ABD are right and therefore we can apply Pythagora's theorem.

$$14^2 = 10^2 + AD^2$$
, $16^2 = 10^2 + AC^2$
Also $x = AC - AD$
= sqrt $(16^2 - 10^2)$ - sqrt $(14^2 - 10^2) = 2.69$

15. Option B

Use right triangle ABC to write: $\tan (31^\circ) = 6/BC$, solve: $BC = 6/\tan (31^\circ)$ Use Pythagora's theorem in the right triangle BCD to write: $9^2 + BC^2 = BD^2$ Solve above for BD and substitute BC: $BD = \text{sqrt} [9 + (6/\tan(31^\circ)^2)] = 13.4$

Option A 16.

The diagram below shows the rectangle with the diagonals and half one of the angles with size x.

tan (x) =
$$\frac{5}{2.5}$$
 = 2, x = arctan (2)

larger angle made by diagonals $2x = 2 \arctan (2) = 127^{\circ}$ smaller angle made by diagonals $180 2x = 53^{\circ}$

17. Option D

Let x be the length of side AC. Use the cosine law $12^2 = 8^2 + x^2 - 2 \times 8 \times x \times \cos(59^\circ)$

$$12^2 = 8^2 + x^2 - 2 \times 8 \times x \times \cos(59^\circ)$$

Solve the quadratic equation for x : x = 14.0 and x = -5.7

x cannot be regative and therefore the solution is x = 14.0

18. Option D

$$\tan \theta = \frac{opposite\ side}{adjacent\ side}$$

$$0.4 = \frac{x}{15}$$

$$x = 0.4 \times 15 = 6 \text{ cm}$$

19. Option A

$$\sin \theta = \frac{opposite}{hypotenuse}$$

$$0.6 = \frac{12}{AB}$$

$$AB = \frac{12}{0.6}$$

$$=20 \text{ cm}$$

Using Pythagoras theorem:

$$x = \sqrt{20^2 - 12^2}$$

$$= 16 cm$$

20. Option D

$$\tan 32 = \frac{x}{\frac{25}{25}}$$

$$.6249 = \frac{x}{\frac{x}{25}}$$

$$x = 15.6225 = 16 \text{ feet}$$

21. Option A

The opposite sides of a rectangle are equal. If the perimeter is 30, the sides are as shown above.

Use trigonometry to find x: $\sin x = \frac{5}{12}$

$$\sin x = \frac{5}{12}$$

$$\sin x = .4167$$

$$x = 24.6 = 25$$

22. Option D

The diagonal of a square creates two 45° - 45° - 90° triangles. You have options for a solution : the Pythagorean Theorem

$$\sin 45^\circ = \frac{8}{r}$$

$$x = 11.3$$

Option A 23.

$$\sin(2x) = 2\sin(x)\cos(x)$$

$$\sin x = - \operatorname{sqrt} \left[1 - (-0.2)^2 \right]$$

$$\sin(2x) = 2 \left[- \text{ sqrt} \left[1 - (-0.2)^2 \right] \right]$$

= 0.39

24. Option C

$$\sin (3x) = 3 \sin x - 4 \sin^3 x$$

$$= 3 \begin{bmatrix} \frac{1}{3} - 4 \end{bmatrix} - 4 \begin{bmatrix} 1 \\ 3 \end{bmatrix}^3$$

$$= \frac{23}{27}$$

