

UNIT III & IV

Bottom up parsing

5.0 Introduction

Given a grammar and a sentence belonging to that grammar, if we have to show that the given
sentence belongs to the given grammar, there are two methods.

1. Leftmost – Derivation
2. Rightmost – Derivation

In left most derivation we start from the start symbol of the grammar and by choosing the production

judiciously we try to derive the given sentence. The parsing methods based on this are known as top-
down methods and we have already discussed this in previous chapter.

In rightmost derivation we start from the given sentence and using various productions, we try to
reach the start symbol. The parsing method based on this concept are known as bottom-up method and
are generally used in compilers generated using various tools like LEX and YACC. The bottom up
parsing methods is more general and efficient. They can find syntactic error as soon as they occur.

We will be studying the following methods of parsing in this chapter

1. LR(0) Parsing
2. SLR (1) Parsing
3. LALR (1) Parsing Methods

Where LR stands for Left to Right scan and Rightmost derivation in reverse. SLR Stands for simple LR
and LALR for Look Ahead LR and 1 in brackets indicate the number of look aheads.

LR (0) stands for no look ahead and LR (1) for one look ahead symbol. In general there can be LR (K)
parsers with ‘K’ lookahead symbols.

5.1 Bottom up parsing

Bottom-up parsers in general use explicit stack. They are also known as shift reduce parsers.

Example: Consider a grammar S → a S b │ c and a sentence a a c b b. The parser put the sentence to
be recognized in the input buffer appended with end of input symbol $ and bottom of stack has
also $.

The parser consults a table indexed by two parameters to be discussed later. The parameters what
is on the top of stack and input character pointed by input buffer pointer. Assume for the time being that
the table tells the parser to do one of the following activities.

The table formation will be discussed later. From the figure above, after 3 shifts the table tells the
parser to reduce in step-4 that is pop c and replace by (i.e., push) ‘S’. In the 5th Step again shift is
executed. In 6th step the parser is told to pop 3 symbols and replace it by S, in 7th step again parser is told
to shift. In 8th step the parser pops 3 symbols & replaces it by S i.e., reduce action takes place. When top
of stack is start symbol i.e., S in this case and input buffer is empty i.e., input buffer is pointing to $ (this
indicates there is no more input available). The parser is told to carryout accept action. The parser is able
to recognize that aacbb is indeed a valid sentence of the given grammar. We shall see later on how shift
reduce and accept actions are indicated.

Example:

Consider another example of parsing using the grammar

S → a A c B e
A → A b │ b
B → d

Recognize abbcde

Rightmost Derivation

S ⇒ a A c B e

 ⇒ a A c d e replace B → d

 ⇒ a A b c d e replace A → A b

 ⇒ a b b c d e replace A → b

Reduction done in the shift reduce parses is exactly the reverse order of rightmost derivation replace
statements.

5.1.1 LR (0) Items: An LR (0) Items, is any production with a dot on the right hand side of a production.

Example 1:

S → a S b has the following LR (0) Items

S → • a S b
S → a • S b
S → a S • b
S → a S b •

As we can see that there are 3 symbols on the right hand side of the production. Therefore there are four
positions where in a dot can be put, in general if there are n characters on RHS of a production there will
be n + 1 LR (0) Items from that production.

Example 2: Find the LR (0) Items

 E → E + T

Solution: LR (0) Items are

E → • E + T
E → E • + T
E → E + • T
E → E + T •

5.1.2 Augmentation of grammar

A grammar must be augmented before an LR parser could be constructed. Augmentation is nothing but
adding a new production, which is not already present in the grammar that derives the start symbol.

Example:

Given grammar S → a S b│c

Augmented grammar

S1 → S
S → a S b│c

 Where S1 is a new start symbol which derives S i.e., the start symbol of the grammar. Now S1
becomes the new start symbol. This is required to uniquely identify the accept state.

 There is a relation between LR (0) Items & Finite Automata. It is possible to construct a DFA to
recognize all viable prefixes of a given grammar. Viable prefixes are right-sentential forms that do not
contain any symbols to the right of the handle. Handle is any RHS of a production.

For Example:

S → a S b│c

Handles are aSb and c

Viable prefixes are – a a c because c is handle
 – a a S b because a c b is a handle
 – a a a S b because a c b is a handle

To start the construction of DFA we need to augment the grammar as follows

S1 → S
S → a S b│c

Then, list all the Items

S1 → • S
S → • a S b
S → a • S b
S → a S • b
S → a S b •
S → • c
S → c •

 There are seven LR (0) Items in the above grammar. These LR (0) Items form the state S of the
DFA. We need to put S1 → • S always is the start state as follows. This state is called as state 0

 Here we need to take closure of LR (0) Items. That is whenever a dot appears before a non-
terminal we need to add to this set the first LR (0) Item derived by S i.e., S → • a S b and S → • c. This is
recursive definition. Now there are dots before only terminal a and c no closure is needed. Therefore
state 0 of DFA has 3 Items.

 Now we have to advance each of LR (0) Items in state 0. This is possible by assuming input is S, a
and c (Note S cannot appear as input, only terminals can appear as input). The resulting states are

 The resulting states are 1, 2 & 3. When dot moves to the end of RHS of a production and there are
no other LR (0) Items, such states are called reduce states. Now we have 1, 3 & 5 are reduced states,
because dot has moved to the rightmost position and no other LR (0) Items in those states. Whereas 0 and
2 state has three LR (0) Items, we say that, if ‘a’ occurs in state 0 then action to is shift and resulting state
is 2. Similarly if ‘c’ occurs in state 0 then action is shift and goto state 3.

 Consider state 2. Here there are three LR (0) Items, because of the closure of production – 1 now to
progress from state of three are 3. Possibilities i.e., S, a and c. If ‘c’ occurs it goes to state 3 and ‘a’
occurs it go to itself as shown. When S occurs in state 2 it goes to state 4. By taking closure in state 4 no
new Items are added. In state 4 when b comes it goes to state 5. Since the dot has reached the last
position in state 5, no further states are generated.

We conclude that with 6 states (i.e., state 0 to 5) we can recognize all viable prefixes i.e.,

Viable Prefixes are

1) S
2) a a* c
3) a a* S
4) a a* S b
5) c

Since we need to recognize five viable prefixes we need to have 6 states.

5.1.3 Classification of states of DFA

States of the DFA are classified as following:

Accept State: The state which recognizes S1 → S. Note this is also a special
reduce state

Reduce State: Where LR (0) Items have their dot placed on the extreme right position example 3
and 5

Shift State: Where all LR (0) Items have their do not in the extreme right position.

Shift/Reduce State: Mix of shift & reduce Items as defined above.

5.1.4 Constructing parsing table SLR (1)

 The parsing table has rows indexed by state of DFA. Whereas columns are indexed by terminals
(including $) and non-terminals (except S1). The portion of table having terminal has index is known as
ACTION Part and that indexed by non-terminals is known as GOTO portion as shown below.

 The filling of table is simple. In state 0 on ‘a’ it goes to state 2. Therefore it is a shift action, hence
an entry S2. Similarly on ‘c’ it goes to state 3, again shift action, hence S3. On ‘S’ it goes to state ‘1’
since ‘S’ is non-terminal it is filled only with state without any action.

 Similarly all the other states are filed. Since $ is always follows any end of sentence, since we are
putting ourselves to recognize the end of input and also when S1 → S. comes. It is treated as accept state,
as this state is unique.

Example: Consider the following grammar

S1 → S 1) S → (S) S
S → (S) S 2) S → Є
S → Є

FOLLOW(S)={), $ }

Parsing using the above table. Input ()

Example: Consider the following grammar.

 A → (A) │ a ,

 Augment the grammar

0) A1
 → A

1) A → (A)

2) A → a

 Follow (A) = {), $ }

Example: Consider the grammar S → (L) │ a , L → L, S │ S, Augment the grammar

S1 → • S 1) S → (L)
S → • (L) │a 2) S → a
L → • L, S│S 3) L → L, S

 4) L → S

Follow (L) = {, ,) }

Follow (S) = {), $}

We have seen the construction SLR (0) parser. This parser is able to parse most of the
programming constructs.

5.1.5 Construction of LR(0) Parser:

LR (0) Parser is not a popular parser and it can be constructed following the procedure used for
SLR (1) parser. The difference between LR(0) and SLR (1) parser is LR(0) parser actions, do not depend
on the look ahead.

Consider the SLR (0) parser constructed for the simple grammar

S → a S b│c

Procedure followed earlier is used to construct the DFA shown in fig 5.3. There are 6 states
Action of each state depends whether it is a reduce state or shift state. In fig. 5.3 we see that there are

1) Reduce States 1, 3 and 5
2) Shift states 0, 2 & 4

Here the shift or reduce actions are done without looking at the input symbol. The table will have the
following entries.

Construction of the table is same as followed in SLR (1) parser and there is no need to calculate follow
symbol for all the reduce states.

Now let use the above parser table to check the input a c b

To start with put starting state i.e., state 0 in parsing stack and input ‘acb’ appended by $ in input.
Stack has stage ‘0’, which is a shift state therefore shift a in to the stack. 0 state on a goes to state 2 as
seen in the table. Therefore push state 2 on to the stack. State 2 is again shift state, therefore shift
character c on to the stack. State 2 on character ‘c’ goes to state 3, therefore push state 3 on to the stack.
This procedure continues i.e., state on the top of the stack decides the action to be gone without looking at
the input symbol. State 1 is a reduce state but it is special because occurs only when we are ready to
accept the input. As we see there is not much change from SLR (1) parsing.

5.2 Limitations of SLR (1)

SLR(1) as we have seen in simple, yet powerful to parse almost all languages constructs. But this fail in
two cases.

1. Shift/Reduce conflict: When a state has both shift and reduce Items are present and parser
indicates that both the operations to be done on a particular symbol. At this point parser will
not be able to resolve and if fails.

2. Reduce/Reduce conflict: When a particular state has LR(1) Items which are both reduce
Items which are both reduce Items i.e., the dot in LR (0) Items has reached rightmost
position. And both are to be reduced on the same symbol.

Let us consider the parser to understand shift/reduce conflict.

S1 → S
S → L = R
S → R
L → A R
L → i d
R → L

Consider the SLR(1) Parser

Let us analyze the state 2. There are two Items

1. S → L • = R
2. R → L •
3.

Item–1 is shift them and Item–2 is reduce Item of we calculate the follow symbols of
R = { = }

There is a conflict on symbol =. We are unable to decide whether to use production R → L to
reduce or shift S → L • = R to next state. This is known shift/reduce content. There is no solution and
parser cannot proceed and SLR (1) fails.

5.3 Construction of LR (1) Parser:

LR (1) parsing or canonical parsing is resorted when SLR (1) fails Here we need to calculate LR (1)
Items instead of LR (0) Items. i.e., the state of DFA will have LR (1) Items.

LR (1) Items have two parts

1. First part, same as LR(0) Item
2. Second part, look ahead or follow symbols that can occur at that instant.

Consider a grammar given below, to illustrate the calculation of LR (1) Items. once LR(1) Items are
calculated the construction of DFA is simple and straightforward.

S1 → S
S → DD
D → cD
D → d

For S1 → • S the follow symbols obviously is $ as S1 is a start symbol. Therefore LR(1) Item is
S1 → • S,$

If we take closure of • S and replace S by • D D still the follow symbol remain $. Therefore

S → • D D, $

Now take closure of D we replace D by • iD. Note that 1st D is replaced. All the First symbols of second
D will become follow symbols.

D → • c D, c / d

D → • d, c / d

Note here we are calculating follow symbol in that context. If we had

S → D • D, $

When we take closure of D, it is the 2nd D . Therefore the Follow symbol will remain $. i.e.,

D → • c D, $ & D → • d, $

We complete the DFA as follows with LR (1) Items.

The parsing table is constructed in the same way as SLR (1) parser but there is no need to calculate follow
symbols.

The r1, r2, r3 are as follows

r1: S→ D D

r2: D → c D

r3: D → d

Let us now parse a sentence derived from the above grammar. Let the given sentence be

5.3.1 Limitations of LR(1) Parser:

In the previous example (Fig 6.2) we see that state 8 and 9 have the same first component but they differ
only in their look ahead symbols. Similarly states 4 & 7 and 3 & 6. LR (1) parser has more states than
SLR (1) parser and for a typical programming language it may have several thousands of states. This
increase the memory requirement.

5.4 Construction LALR(1) Parser:

This can easily be constructed from the table of LR (1) parser. Basic principle being the states which
have the same first component (called common core) are combined, to form new states, which we may
call them by their combined states. For example

States 3 & 6 are combined & a new state is called 36 state

Similarly we create 89 and 47 states.

The action and GOTO are modified and the new follows LALR (1) parsing table is as

The procedure for parsing is same as in SLR (1) parser.

LALR (1) parsers are the most common and are modern parsers. The parser generator generally construct
LALR (1) parsers. These parser do have states comparable to that of SLR (1) parser.

5.5 Parser Generator : YACC:

/*Yacc program for checking the validity of an arithmetic expression*/

%{
#include<stdio.h>
int flag;
%}
%left '-' '+'
%left '*' '/'
%left '%'
%token DT, OP /* DT → digits; OP → operands; these

are defined in the lex program below*/
%%

E:S {flag = 1; printf("\n valid expression \n");}
S:S '+' S /* S is being defined in this section;
 |S '-' S S could be defined as S+S; or S-S;
 |S '*' S S*S; or S/S or (S) or digit or
 |S '/' S operand for checking the validity of
 |'(' S ')' the expression */
 |DT
 |OP
 ;
%%

int main()
 {
 char ch;
 flag = 0; /* initialization of flag */
 printf("\n enter expression : ");
 yyparse();

 return 0;
 }

int yyerror()
 {
 if(flag==0)
 printf("\n invalid expression\n");
 return 0;
 }

/*Supporting Lex program for checking the validity of an arithmetic expression*/

%{
#include "y.tab.h"
%}
%%
[0-9]+ {return DT;}
[a-zA-Z]+ {return OP;}

[\t] ;
\n {return 0;}
. {return yytext[0];}
%%

Output:

1. enter expression : (A+B)

valid expression

2. enter expression : a*b-c
valid expression

3. enter expression : a/c+b-e

valid expression

4. enter expression : 5+(8-4)
valid expression

5. enter expression : 5(8-4)

invalid expression

6. enter expression : (a*b-c
invalid expression

5.6 Error Recovery in Bottom-up parser:

As discussed earlier error recovery is to give suitable error message and also give a correction so that
parsing is successful.

Consider the grammar following grammar

S → a S b │ c

And the corresponding parsing table at 5.14. In this table blanks indicate error. Here we are to give
connection to suitable error routine which gives a suitable error messages and does the appropriate
correction. The table is modified as follows

e1: Error routing : Error – Message – rising a push a & cover is with state 2

e2: Error routine : Error Message – unbalanced b & remove input symbol.

Now let us see how parser will be able recover while parsing a syntactically wrong sentence and also give
suitable messages.

 Above recovery shows that with error routines e1 and e2 not only relevant error messages were given and
parser was able recover from the error to accept the syntactically wrong input ‘b c b’

In general error routine design requires careful consideration. The above error recovery is only to
illustrate a typical case. However we have left other error places (blanks) without any action. By careful
consideration all the error places we can suggest suitable recovery action.

Assignment

1. Construct LR (0) items for grammar

 E→(L)/a

 L→ L,E/E

2. Construct LR (0) items for grammar

 S →A a │ b A c│B c│b B a

 A →d

 B →d

4. Consider the grammar Q no 1, construct the SLR parsing table for the same

5. Show that the grammar

 S → A a Ab │ B b B a

 A → Є

 B → Є

 is not SLR

6. Construct LR (0) items for grammar

7. Construct SLR parsing table for the grammar in Q. No.5

8. Show the parsing stack and the actions of an SLR parser for the input string ((a),a,(a,a)) considering
the grammar of Q no 1

9. Construct DFA of LALR(1) items for the grammar in Q no 1

10. Construct LALR parsing table for the grammar in Q no 1

11. Show that the following grammar is not LR(1)

 A→ aAa / ε

