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Unit – 2 
 
Chapter 4 
 
Syntax Analysis – 1 
 
4.1 Introduction 
 
Every programming language has rules that prescribe the syntactic structure of programs. The 
syntax of programming language can be described by context-free grammars. A grammar gives 
precise, easy-to-understand, syntactic specification of a programming language. We can 
automatically construct an efficient parser and also determine undetected errors, syntactic 
ambiguities in the initial design phase. A grammar gives structure of a programming language 
which is useful in translation of source program to object code and for the detection of errors. 
 
The role of the parser 
 
The input for the parser is a stream of tokens from lexical analysis and output is a parse tree, in 
which tokens are grouped hierarchically with collective meaning. It should report: any syntax 
errors, recover from commonly occurring errors, collecting information about various tokens, 
performing type checking, generating intermediate code, etc. 
 
The most efficient top-down and bottom-up methods work only for subclasses of grammars, but 
several of these classes, particularly, LL and LR grammars, are expressive enough to describe most 
of the syntactic constructs in modern programming languages. Parsers implemented by hand often 
use LL grammars; for example, the predictive-parsing approach works for LL grammars. Parsers 
for the larger class of LR grammars are usually constructed using automated tools. 
 
Types of parsers for grammar are: top-down: build parse tree from root to the leaves and bottom-up: 
build parse tree from leaves to the root. Input the parser is scanned from left to right, one symbol at 
a time.  
 
Syntax Error Handling 
 
Common programming errors can occur at many different levels. 
 

• Lexical errors include misspellings of identifiers, keywords, or operators-e.g., the use of an 
identifier elipseSize instead of ellipseSize and missing quotes around text intended as a string. 
Misspelling an identifier, keyword, and operator are basically addressed.  
 
• Syntactic errors include misplaced semicolons or extra or missing braces; that is, "{" or " } . " As 
another example, in C or Java, the appearance of a case statement without an enclosing switch is a 
syntactic error. (However, this situation is usually allowed by the parser and caught later in the 
processing, as the compiler attempts to generate code). Unbalanced parenthesis in expressions is 
handled. 
 
• Semantic errors include type mismatches between operators and operands. An example is a r e t un 
statement in a Java method with result type void. Operator on an incompatible operand is an 
example. 
 
• Logical errors can be anything from incorrect reasoning on the part of the programmer to the use 
in a C program of the assignment operator = instead of the comparison operator ==. The program 
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containing = may be well formed; however, it may not reflect the programmer's intent. Infinite 
recursive calls are considered as logical errors. 
 
Usually, error detection and recovery is centered on the syntax analysis phase because of two 
reasons: Many errors are syntactic in nature and many tokens may disobey the grammatical rules. 
They can detect the presence of syntactic errors in programs very efficiently. Therefore, parser 
should report the presence of errors clearly and accurately. Recover from errors quickly so that it is 
able to detect subsequent errors. It should not slow down the processing of correct programs. 
Several parsing methods, LL and LR, detect an error as soon as possible. They have viable-prefix 
property, by which they detect error as soon as they see a prefix of the input that is not a prefix of 
any string in the language. 
 
The error handler in a parser has goals that are simple to state but challenging to realize: 
• Report the presence of errors clearly and accurately. 
• Recover from each error quickly enough to detect subsequent errors. 
• Add minimal overhead to the processing of correct programs. 
 
Error-Recovery Strategies 
 
The simplest approach is for the parser to quit with an informative error message when it detects the 
first error. Additional errors are often uncovered if the parser can restore itself to a state where 
processing of the input can continue with reasonable hopes that the further processing will provide 
meaningful diagnostic information. If errors increase, it is better for the compiler to give up after 
exceeding some error limit.  
 
Panic-Mode Recovery 
 
With this method, on discovering an error, the parser discards input symbols one at a time until one 
of a designated set of synchronizing tokens is found. The synchronizing tokens are usually 
delimiters, such as semicolon or}, whose role in the source program is clear and unambiguous. The 
compiler designer must select the synchronizing tokens appropriate for the source language. While 
panic-mode correction often skips a considerable amount of input without checking it for additional 
errors, it has the advantage of simplicity, and, unlike some methods to be considered later, is 
guaranteed not to go into an infinite loop. 
 
Phrase-Level Recovery 
 
On discovering an error, a parser may perform local correction on the remaining input; that is, it 
may replace a prefix of the remaining input by some string that allows the parser to continue. A 
typical local correction is to replace a comma by a semicolon, delete an extraneous semicolon, or 
insert a missing semicolon. The choice of the local correction is left to the compiler designer. Of 
course, we must be careful to choose replacements that do not lead to infinite loops, as would be the 
case, for example, if we always inserted something on the input ahead of the current input symbol. 
Phrase-level replacement has been used in several error-repairing compilers, as it can correct any 
input string. Its major drawback is the difficulty it has in coping with situations in which the actual 
error has occurred before the point of detection. 
 
Error Productions 
 
By anticipating common errors that might be encountered, we can augment the grammar for the 
language at hand with productions that generate the erroneous constructs. A parser constructed from 
a grammar augmented by these error productions detects the anticipated errors when an error 
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production is used during parsing. The parser can then generate appropriate error diagnostics about 
the erroneous construct that has been recognized in the input. 
 
Global Correction 
 
Ideally, we would like a compiler to make as few changes as possible in processing an incorrect 
input string. There are algorithms for choosing a minimal sequence of changes to obtain a globally 
least-cost correction. Given an incorrect input string x and grammar G, these algorithms will find a 
parse tree for a related string y, such that the number of insertions, deletions, and changes of tokens 
required to transform x into y is as small as possible. Unfortunately, these methods are in general 
too costly to implement in terms of time and space, so these techniques are currently only of 
theoretical interest. Do note that a closest correct program may not be what the programmer had in 
mind. Nevertheless, the notion of least-cost correction provides a yardstick for evaluating error-
recovery techniques, and has been used for finding optimal replacement strings for phrase-level 
recovery. 
 
4.2 Context-free grammar 
 
Consider a conditional statement 
If S1 and S2 are statements and E is an expression, then 
 

“if E then S1 else S2” 

 
We know that, regular expression can specify the lexical structure of tokens. Using some syntactic 
variable, stmt, we can specify grammar production 
 

Stmt →if expr then stmt else stmt 

 
A context-free grammar consists of terminals, nonterminals, start symbol and set of productions. 
 
1. Terminals are the basic symbols from which strings are formed. The term "token name" is a 

synonym for "terminal" and frequently we will use the word "token" for terminal when it is 
clear that we are talking about just the token name. We assume that the terminals are the first 
components of the tokens output by the lexical analyzer. The terminals are the keywords if and 
else and the symbols "(" and " ) ." 

 
2. Nonterminals are syntactic variables that denote sets of strings. stmt and expr are nonterminals. 

The sets of strings denoted by nonterminals help define the language generated by the grammar. 
Nonterminals impose a hierarchical structure on the language that is key to syntax analysis and 
translation.  

 
3. In a grammar, one nonterminal is distinguished as the start symbol, and the set of strings it 

denotes is the language generated by the grammar. Conventionally, the productions for the start 
symbol are listed first. 

 
4. The productions of a grammar specify the manner in which the terminals and nonterminals can 

be combined to form strings. Each production consists of: 
(a) A nonterminal called the head or left side of the production; this production defines some 

of the strings denoted by the head. 
(b) The symbol : = has been used in place of → 
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(c) A body or right side consisting of zero or more terminals and nonterminals. The 
components of the body describe one way in which strings of the nonterminal at the 
head can be constructed. 

 
Consider the grammar for simple arithmetic expressions as follows: 

expr → expr + term | expr-term | term 
term → term * factor | term / factor | factor 
factor →(expr) | id 
E →E + T | E – T | T 
T →T * F | T / F | F 
F →(E) | id 
 

Notational conventions 
 
1. These symbols are terminals: 

(a) Lowercase letters, early in the alphabet, such as a, b, c. 

 

(b) Operator symbols such as +, *, and so on. 
 
(c) Punctuation symbols such as parentheses, comma, and so on. 
 
(d) The digits 0 , 1 , . . . ,9. 
 
(e) Boldface strings such as id or if, each of which represents a single terminal symbol. 

 
2. These symbols are nonterminals: 

(a) Uppercase letters early in the alphabet, such as A, B, C. 

 

(b) The letter S, which, when it appears, is usually the start symbol. 
 
(c) Lowercase, italic names such as expr or stmt. 

 

(d) When discussing programming constructs, uppercase letters may be used to represent 
nonterminals for the constructs. For example, nonterminals for expressions, terms, and 
factors are often represented by E, T, and F, respectively. 

 
3. Uppercase letters late in the alphabet, such as X, Y, Z, represent grammar symbols; that is, either 

nonterminals or terminals. 
 
4. Lowercase letters late in the alphabet, chiefly u,v,..., z, represent (possibly empty) strings of 

terminals. 
 
5. Lowercase Greek letters represent (possibly empty) strings of grammar symbols. Thus, a generic 

production can be written as A → a, where A is the head and a is the body. 
 
6. A set of productions with a common head A may be written with the alternatives for A. 
 
7. Unless stated otherwise, the head of the first production is the start symbol. 
 
Now, consider an example: 
 

E →E + T | E – T | T 
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T →T * F | T / F | F 
F → (E) | id 
 

Derivations 
 
The objective is that a production is treated as a rewriting rule in which the nonterminal on the left 
is replaced by the string on the right side of the production. The construction of a parse tree can be 
made precise by taking a derivational view, in which productions are treated as rewriting rules. 
Beginning with the start symbol, each rewriting step replaces a nonterminal by the body of one of 
its productions. This derivational view corresponds to the top-down construction of a parse tree, but 
the precision afforded by derivations will be especially helpful when bottom-up parsing is 
discussed. 
 

 E →E + E | E * E | (E) | -E | id is a grammar 
 
E →-E means, we can replace E by –E and represented by E ═> -E means E derives –E 
 
E*E ═>(E)*E|E*(E) 
 
We can apply productions in any order 
 
E ═> -E ═> -(E) ═> -(id) derivation of –(id) from E 
αAβ ═>αδβ if A→δ is a production 
 
α1 ═> α2 ═> … ═> αn we say α1 ═> αn 
 
═> derives in one step 
 
* 
═> derives in zero or more steps 
 
+ 
═> derives in one or more steps 
 
          * 
Eg: α ═> α for any string α 
       *                 * 
If α ═> β and β ═> δ then α ═> δ 
 
Grammar G with start symbol S 
L(G) language generated by G 
A string of terminals ‘w’ is in L(G) if and only if 
    + 
S ═> w. string w is called a sentence of G 
L(G) is context-free language 
 
If two grammars generate the same language, the grammars are said to be equivalent  
 
Sentential form of G 
 

At each step in a derivation, there are two choices to be made. If α═>β by a step in which left most 
non terminal in α is replaced, we write 
                     α═>β 
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                       lm 
so we rewrite left sentential form of the grammar. 
Similarly, right most derivations/canonical derivations also exist.  
 
Parse trees and Derivations 
 
A Parse tree is a graphical representation for a derivation. A parse tree ignores variations in the 
order in which symbols in sentential forms are replaced. ‘*’ will have higher priority than ‘+’ in the 
sentence id+id*id 
 
Ambiguity 
 
A grammar that produces more than one parse tree for some sentence is said to be ambiguous. For 
certain types of parsers, it is desirable that the grammar be made unambiguous. For instance, two 
parse trees exist for id+id*id 
 
Verifying the Language Generated by a Grammar 
 
Although compiler designers rarely do so for a complete programming-language grammar, it is 
useful to be able to reason that a given set of productions generates a particular language. 
Troublesome constructs can be studied by writing a concise, abstract grammar and studying the 
language that it generates. We shall construct such a grammar for conditional statements below. A 
proof that a grammar G generates a language L has two parts: show that every string generated by G 

is in L, and conversely that every string in L can indeed be generated by G. 

 
Lexical Versus Syntactic Analysis 
 
1. Separating the syntactic structure of a language into lexical and nonlexical parts provides a 

convenient way of modularizing the front end of a compiler into two manageable-sized 
components. 

2. The lexical rules of a language are frequently quite simple, and to describe them we do not need a 
notation as powerful as grammars. 

3. Regular expressions generally provide a more concise and easier-to-understand notation for 
tokens than grammars. 

4. More efficient lexical analyzers can be constructed automatically from regular expressions than 
from arbitrary grammars. 

 
Eliminating ambiguity 
 
Consider the grammar 
  
                                                stmt → if E then S | if E then S else S | other 
 
 
For the sentence 
 

If E then S else if E then S else S 
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• For the sentence 
If E then if E then S else S 
 

 
 
and 
 

 
 
The general rule to eliminate ambiguity is: 
 

“match each else with the closest previous unmatched then” 
 

Unambiguous grammar is: 
stmt → matched-stmt | unmatched-stmt 
matched-stmt →if E then matched-stmt else matched-stmt | other 
unmatched-stmt →if E then stmt | if E then matched-stmt else unmatched-stmt 
 

Elimination of left recursion 
 
A grammar is left recursive if it has a nonterminal A, such that there is a derivation A ═> Aα for 
some string α. Top-down parsing cannot handle left recursive grammars. So elimination is required 
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Algorithm: Eliminating left recursion 

 
INPUT: Grammar G with no cycles or Є-productions. 
OUTPUT: An equivalent grammar with no left recursion. 
METHOD: Apply the algorithm to the grammar G. Note that the resulting non-left-recursive 
grammar may have Є-productions. 

arrange the nonterminals in some order A1,A2,... ,An. 

for(each i from 1 to n){ 

for(each j from 1 to i-1){ 
replace each production of the form Ai→ Aj γ by the productions Ai→ δ1γ | δ2γ|…| γ. 

where Aj —> Si I S2 I • • • I Sk are all current Aj-productions} 
eliminate the immediate left recursion among the ^-productions} 

Algorithm to eliminate left recursion from a grammar 
 
Consider again the grammar, 
 

E →E + T | E – T | T 
T →T * F | T / F | F 
F → (E) | id 
 

The modified grammar after the elimination of left recursion is: 
 

E -> T E' 

E' ^ + T E' 

T ^ FT' 

T' -> * F T 

F->(E) | id 
 
Left factoring 
 
It is a grammar transformation suitable for predictive parsing. Basic idea is: when it is not clear 
which of the two productions to expand, we can rewrite the productions so to make the right choice. 
 
The following grammar abstracts the "dangling-else" problem: 
 

S → i E t S | i E t S e S | a 
E → b 
 

Here, i, t, and e stand for if, then, and else; E and S stand for "conditional 
expression" and "statement." After left-factoring this grammar, we have: 
 

S → i E t S S' | a 
S' → e S | Є  
E → b 

 
Top-down parsing 
 
Top-down parsing can be viewed as the problem of constructing a parse tree for the input string, 
starting from the root and creating the nodes of the parse tree in preorder. Equivalently, top-down 
parsing can be viewed as finding a leftmost derivation for an input string. 
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At each step of a top-down parse, the key problem is that of determining the production to be 
applied for a nonterminal, say A. Once an A-production is chosen, the rest of the parsing process 
consists of "matching" the terminal symbols in the production body with the input string. 
 
To find a left-most derivation for an input string, To construct parse tree for the input starting from 
the root and creating the nodes of the parse tree in preorder, Predictive parser is non-backtracking 
form of top-down parser, Predictive parsers is a special case of recursive-descent parsing, General 
form of top-down parsing is recursive-descent, that may involve backtracking 
 
A left-recursive grammar can cause a recursive-descent parser to go into an infinite loop. By 
eliminating left recursion from a grammar, left factoring the resulting grammar, we can obtain a 
grammar that can be parsed by a recursive-descent parser without backtracking – predictive parsing. 
The proper alternative must be detectable by looking at only the first symbol it derives FIRST and 
FOLLOW – two functions associated with a grammar G, in construction of a predictive parser. 
 
Recursive-Descent Parsing 
 

void A {) { 

1.   Choose an A-production, A X\X2 - • • Xk\ 

2.     for (i = 1 to k) { 

3.   if (X is a nonterminal) 
4.     call procedure XiQ; 

5.    else if (Xi equals the current input symbol a) 

6.     advance the input to the next symbol; 
7.    else /* an error has occurred */; 

} 
} 

A typical procedure for a nonterminal in a top-down parser 
 
A recursive-descent parsing program consists of a set of procedures, one for each nonterminal. 
Execution begins with the procedure for the start symbol, which halts and announces success if its 
procedure body scans the entire input string. Pseudo code for a typical nonterminal is shown above. 
Note that this pseudo code is nondeterministic, since it begins by choosing the A-production to 
apply in a manner that is not specified.  
 
General recursive-descent may require backtracking; that is, it may require repeated scans over the 
input. However, backtracking is rarely needed to parse programming language constructs, so 
backtracking parsers are not seen frequently.  
 
To allow backtracking, the code needs to be modified. First, we cannot choose a unique A-
production at line (1), so we must try each of several productions in some order. Then, failure at 
line (7) is not ultimate failure, but suggests only that we need to return to line (1) and try another A-
production. Only if there are no more A-productions to try do we declare that an input error has 
been found. In order to try another A-production, we need to be able to reset the input pointer to 
where it was when we first reached line (1). Thus, a local variable is needed to store this input 
pointer for future use. 
 
FIRST and FOLLOW 
 
The construction of both top-down and bottom-up parsers is aided by two functions, FIRST and 
FOLLOW, associated with a grammar G. During top-down parsing, FIRST and FOLLOW allow us 
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to choose which production to apply, based on the next input symbol. During panic-mode error 
recovery, sets of tokens produced by FOLLOW can be used as synchronizing tokens. 
 
To compute FIRST(X) for all grammar symbols X, apply the following rules until no more 
terminals or Є can be added to any FIRST set. 

 
1. If X is a terminal, then FIRST(X) = {X}. 

 

2. If X is a nonterminal and X → Y1Y2 … Yk is a production for some k >= 1, then place a in 
FIRST(X) if for some i, a is in FIRST(Yi), and Є is in all of FlRST(Y1),... , FIRST(Yi-1); 
that is, Y1 …Yi-1═> Є. If Є  is in FIRST(Yj) for all j = 1,2,... , k, then add Є to FIRST(X). For 
example, everything in FIRST(Y1) is surely in FIRST(X). If Є does not derive Є, then we 
add nothing more to FIRST(X), but if Y1 ═> Є, then we add FIRST(Y2), and so on. 

 
3. If X → Є is a production, then add Є to FIRST(X). 

 
To compute FOLLOW(A) for all nonterminals A, apply the following rules until nothing can be 
added to any FOLLOW set. 

 
1. Place $ in FOLLOW(S), where S is the start symbol, and $ is the input right end marker. 
 
2. If there is a production A→ aB/3, then everything in FIRST(/3) except Є is in FOLLOW(B). 
 
3. If there is a production A→aB, or a production A→ aB/3, where FIRST(/3) contains Є, then 

everything in FOLLOW(A) is in FOLLOW(B) . 
 
Consider the grammar, (after the elimination of left recursion and doing left factoring) 
     E→TE` 
     E`→+TE`|Є 
     T→FT` 
     T`→*FT`| Є 
     F→(E)|id 
 
FIRST(E)=FIRST(T)=FIRST(F)={(,id} 
FIRST(E`)={+, Є} 
FIRST(T`)={*, Є} 
 
FOllOW(E)=FOLLOW(E`)={),$} 
FOllOW(T)=FOLLOW(T`)={+,),$} 
FOLLOW(F)={*,+,),$} 
 
LL(1) Grammars 
 
Predictive parsers, that is, recursive-descent parsers needing no backtracking, can be constructed for 
a class of grammars called LL (1). The first "L" in LL(1) stands for scanning the input from left to 
right, the second "L" for producing a leftmost derivation, and the "1" for using one input symbol of 
look ahead at each step to make parsing action decisions.  
 
Transition diagrams are useful for visualizing predictive parsers. For example, the transition 
diagrams for nonterminals E and E' of above grammar appear in below figure. To construct the 
transition diagram from a grammar, first eliminate left recursion and then left factor the grammar. 
Then, for each nonterminal A, 
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1. Create an initial and final (return) state. 
 
2. For each production A→ X1,X2, …,Xk, create a path from the initial to the final state, with edges 

labeled X1,X2,…,Xk, If A→Є, the path is an edge labeled Є. 
 

 
 
Construction of predictive parsing table, M 
 
INPUT: Grammar G. 

OUTPUT: Parsing table M. 

METHOD: For each production A→α of the grammar, do the following: 
 
1. For each terminal a in FIRST(α), add A→α to M[A, a]. 

 

2. If Є is in FlRST(α), then for each terminal b in FOLLOW(A), add →α to M[A,b]. If Є is in 
FIRST(α) and $ is in FOLLOW(A), add A→α to M[A, $] as well. 

 
If, after performing the above, there is no production at all in M[A, a], then set M[A, a] to error. 

Error entries are represented by blanks in the table. 
 

For the above expression grammar, the algorithm produces the parsing table shown below. Blanks 
are error entries; nonblanks indicate a production with which to expand a nonterminal. 
 

Nonterminal Input Symbol 
id + * ( ) $ 

E E→TE’   E→TE’   

E’  E’→+TE’   E’→Є E’→Є 

T T→FT’   T→FT’   

T’  T’→Є T’→*FT’  T’→Є T’→Є 

F F→id   F→(E)   

 
Parsing table M 

 
set ip to point to the first symbol of w; 

set X to the top stack symbol; 
while (X !=$ ) { /* stack is not empty */ 

if (X is a ) pop the stack and advance ip; 

else if (X is a terminal ) error(); 

else if (M[X,a] is an error entry ) error(); 

else if (M[X,a] = X→ Y1Y2 •••Yk) { 

output the production X -> Y1 Y2 • • • Yk; 

pop the stack; 
push Yk, YK-1,... ,Y1 onto the stack, with Y1 on top; 
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} 
set X to the top stack symbol; 

} 
 

Predictive parsing algorithm 
 

Matched Stack Input Action 
 
 
 
 
id  
id 
id 
id+ 
id+ 
id+ 
id+id 
id+id 
id+id* 
id+id* 
id+id*id 
id+id*id 
id+id*id 

E$ 
TE'$ 

FT'E'$  
id T'E'$  

T'E'$  
E'$ 

+ TE'$ 
TE'$ 

FT'E'$ 
T'E'$ 
T'E'$ 

* FT'E'$ 
FT'E'$ 

T'E'$ 
T'E'$ 

E'$ 
$ 

id + id * id$ 
id + id * id$  
id + id * id$ 
id + id * id$ 

+ id * id$  
+ id * id$  
+ id * id$  

id * id$  
id * id$  
id * id$  

*id$  
*id$  

id$  
id$  

$  
$  
$ 

 
output E -> TE' 
output T -+ FT' 
output F -> id 
match id 
output T" -> Є 
output E' -+ + TE' 
match + 
output T FT' 
output F -» id 
match id 
output T" -» * FT' 
match * 
output F -» id 
match id 
output T' -+ e 
output E' -+ e 

 
Move made in stack by predictive parser on input string 

 
LL (1) grammar 
 
It could be possible to have more than one entry in M [nonterminal, terminal] in parsing table. A 
grammar whose parsing table has no multiply-defined entries is said to be LL (1) where, 
‘L’ means left to right scanning 
‘L’ means producing left-most derivation 
‘1’ means using one input symbol 
 
Error recovery in predictive parsing 
 
Panic mode recovery 
 
Panic-mode error recovery is based on the idea of skipping symbols on the input until a token in a 
selected set of synchronizing tokens appears. Its effectiveness depends on the choice of 
synchronizing set. The sets should be chosen so that the parser recovers quickly from errors that are 
likely to occur in practice. 
 

Synchronizing tokens are added in parsing table (enter “synch” for FOLLOW={set of 
terminals}) 
  

Nonterminal Input Symbol 
id + * ( ) $ 

E E→TE’   E→TE’ Synch  Synch 

E’  E’→+TE’   E’→Є E’→Є 

T T→FT’ Synch   T→FT’ Synch Synch 
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T’  T’→Є T’→*FT’  T’→Є T’→Є 

F F→id Synch  Synch  F→(E) Synch Synch 

 
 
Moves made in stack by predictive parser on wrong input string with respect to the table 
entries 
 

Stack Input Remark 
E$ 
E$ 

TE'$  
FT'E'$ 
idT'E'$ 

T'E'$ 
* FT'E'$ 

FT'E'$ 
T'E'$ 

E'$ 
+TE'$ 

TE'$ 
FT’E’$ 
idT’E’$ 

T’E’$ 
E’$ 

$ 

)id*+id$ 
id*+id$ 
id*+id$ 
id*+id$ 
id*+id$ 

*+id$ 
*+id$ 

+id$ 
+id$ 
+id$ 
+id$ 

id$ 
id$ 
id$ 

$ 
$ 
$ 

Error, skip ) 
id is in FIRST(E) 
 
 
 
 
 
Error, M[F,+]=synch 
F has been popped 

 
Phrase level recovery 
 
Phrase-level error recovery is implemented by filling in the blank entries in the predictive parsing 
table with pointers to error routines. These routines may change, insert, or delete symbols on the 
input and issue appropriate error messages. They may also pop from the stack. Alteration of stack 
symbols or the pushing of new symbols onto the stack is questionable for several reasons. First, the 
steps carried out by the parser might then not correspond to the derivation of any word in the 
language at all. Second, we must ensure that there is no possibility of an infinite loop. Checking that 
any recovery action eventually results in an input symbol being consumed (or the stack being 
shortened if the end of the input has been reached) is a good way to protect against such loops. 
 
 
 
 
 
 
 
 
 


