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Unit 1: 

Introduction  

1.1.1 Signal definition 

A signal is a function representing a physical quantity or variable, and typically it contains 
information about the behaviour or nature of the phenomenon. 

For instance, in a RC circuit the signal may represent the voltage across the capacitor or the 

current flowing in the resistor. Mathematically, a signal is represented as a function of an 

independent variable 't'. Usually 't' represents time. Thus, a signal is denoted by x(t). 

1.1.2 System definition 

A system is a mathematical model of a physical process that relates the input (or excitation) 

signal to the output (or response) signal. 

Let x and y be the input and output signals, respectively, of a system. Then the system is 

viewed as a transformation (or mapping) of x into y. This transformation is represented by the 

mathematical notation 

31= Tx (1.1) 

where T is the operator representing some well-defined rule by which x is transformed into y. 

Relationship (1.1) is depicted as shown in Fig. 1-1(a). Multiple input and/or output signals are 

possible as shown in Fig. 1-1(b). We will restrict our attention for the most part in this text to the 

single-input, single-output case. 

 
1 

 

 
 

  
 

 

  

1.1 System with single or multiple input and output signals 

1.2 Classification of signals 

Basically seven different classifications are there: 

4- Continuous-Time and Discrete-Time Signals 

A. Analog and Digital Signals 

Real and Complex Signals 
A. Deterministic and Random Signals 

4- Even and Odd Signals 

4- Periodic and Nonperiodic Signals 

4- Energy and Power Signals 

Continuous-Time and Discrete-Time Signals 

A signal x(t) is a continuous-time signal if t is a continuous variable. If t is a discrete variable, 

that is, x(t) is defined at discrete times, then x(t) is a discrete-time signal. Since a 
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discrete-time signal is defined at discrete times, a discrete-time signal is often identified as a 

sequence of numbers, denoted by {x,) or x[n], where n = integer. Illustrations of a continuous-
time signal x(t) and of a discrete-time signal x[n] are shown in Fig. 1-2. 

1 • 
 

. 1  

I 

 0 -%  -
4  -3  2 J  0  1  2  ,  -  q  -  

1.2 Graphical representation of (a) continuous-time and (b) discrete-time signals 

Analog and Digital Signals 

If a continuous-time signal x(t) can take on any value in the continuous interval (a, b), where 

a may be - 00 and b may be +00 then the continuous-time signal x(t) is called an analog signal. If 

a discrete-time signal x[n] can take on only a finite number of distinct values, then we call this 
signal a digital signal. 

Real and Complex Signals 

A signal x(t) is a real signal if its value is a real number, and a signal x(t) is a complex signal 

if its value is a complex number. A general complex signal x(t) is a function of the form 

x (t) = xi (t) + jx2 (t) 1.2 

where xi (t) and x2 (t) are real signals and j = V-1 

Note that in Eq. (1.2) 't' represents either a continuous or a discrete variable. 

Deterministic and Random Signals: 

Deterministic signals are those signals whose values are completely specified for any given 

time. Thus, a deterministic signal can be modelled by a known function of time 't'. 
Random signals are those signals that take random values at any given time and must be 

characterized statistically. 

Even and Odd Signals 

A signal x ( t ) or x[n] is referred to as an even signal if 

x (- t) = x(t) 
x [-n] = x [n] (1.3) 

A signal x ( t ) or x[n] is referred to as an odd signal if 

x(-t) = - x(t) 

x[- n] - x[n] (1.4) 

Examples of even and odd signals are shown in Fig. 1.3. 
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1.3 Examples of even signals (a and b) and odd signals (c and d). 

Any signal x(t) or x[n] can be expressed as a sum of two signals, one of which is even 

and one of which is odd. That is, 

X(t) X o (t) ± Xe Lt = 
(1.5) 

Where, 

;(t) =  
2 
—1 (x(0 + x(-0) 

xo(t) =  —1 (x(t)—x(-0) 
, 

(1.6) 

Similarly for x[n], 

X [n]  [n] + x  o (1.7) 

Where, 

X  = 
   

 
 = 

— 

1
1 

1.X[0] x[—.u] )  
(1.8) 

Note that the product of two even signals or of two odd signals is an even signal and 

that the product of an even signal and an odd signal is an odd signal. 

Periodic and Nonperiodic Signals 

A continuous-time signal x ( t ) is said to be periodic with period T if there is a positive 

nonzero value of T for which 

+ — x(e) alld 
(1.9) 
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An example of such a signal is given in Fig. 1-4(a). From Eq. (1.9) or Fig. 1-4(a) it follows 

that 

xi r + en T )  
(1.10) 

for all t and any integer m. The fundamental period T, of x(t) is the smallest positive value of 

T for which Eq. (1.9) holds. Note that this definition does not work for a constant 

        

t P e • • 

 •   

 I ! I I h 

  • 
  •  

 
0 

N 

i b) 

1.4 Examples of periodic signals. 

signal x(t) (known as a dc signal). For a constant signal x(t) the fundamental period is 

undefined since x(t) is periodic for any choice of T (and so there is no smallest positive 

value). Any continuous-time signal which is not periodic is called a nonperiodic (or 

aperiodic) signal. 

Periodic discrete-time signals are defined analogously. A sequence (discrete-time 

signal) x[n] is periodic with period N if there is a positive integer N for which 

n  N ]  = x  [n]  
(1.11) 

An example of such a sequence is given in Fig. 1-4(b). From Eq. (1.11) and Fig. 1-4(b) it 

follows that 

n + mNi — n 
(1.12) 

for all n and any integer m. The fundamental period No of x[n] is the smallest positive integer 

N for which Eq.(1.11) holds. Any sequence which is not periodic is called a nonperiodic (or 

aperiodic sequence. 
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Note that a sequence obtained by uniform sampling of a periodic continuous-time signal may 

not be periodic. Note also that the sum of two continuous-time periodic signals may not be 

periodic but that the sum of two periodic sequences is always periodic. 

Energy and Power Signals 

Consider v(t) to be the voltage across a resistor R producing a current i(t). The 

instantaneous power p(t) per ohm is defined as 

P ( r ) 
 

=  R 
=  

(1.13) 

Total energy E and average power P on a per-ohm basis are 

E f  - i 2 ( i )6 (1  j ou les  
 

P 
lirn 
T T, 

1 
T/2 

i2(r)di watts 
  f 

-T/1 

(1.14) 

For an arbitrary continuous-time signal x(t), the normalized energy content E of x(t) is 

defined as 

E 
 

x (i ) ' de 

(1.15) 

The normalized average power P of x(t) is defined as 

- uirn 
1 

 T/2 Ix(i)r2di 
T I C  /  Ti  2 

(1.16) 

Similarly, for a discrete-time signal x[n], the normalized energy content E of x[n] is 

defined as 

- V i .  

 (1.17) 

The normalized average power P of x[n] is defined as 

P= lint 
  

 
2N 4- 1 - - 

(1.18) 

Based on definitions (1.15) to (1.18), the following classes of signals are defined: 

1. x(t) (or x[n]) is said to be an energy signal (or sequence) if and only if 0 < E < m, and 

so P = 0. 

2. x(t) (or x[n]) is said to be a power signal (or sequence) if and only if 0 < P < m, thus 
implying that E = m. 

3. Signals that satisfy neither property are referred to as neither energy signals nor power 
signals. 

Note that a periodic signal is a power signal if its energy content per period is finite, and then 

the average power of this signal need only be calculated over a period 
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1.3 Basic Operations on signals  

The operations performed on signals can be broadly classified into two kinds 

A- 

Operations on dependent variables 

Operations on independent variables 

Operations on dependent variables 

The operations of the dependent variable can be classified into five types: amplitude scaling, 

addition, multiplication, integration and differentiation. 

Amplitude scaling 

Amplitude scaling of a signal x(t) given by equation 1.19, results in amplification of 

x(t) if a >1, and attenuation if a <1. 

y(t) =ax(t) (1.20) 

 2 

 

2 
i  

2 

0 
 

0 
 

0 

-2 -2 

 

\) -2 

0 0.5 1 0 0.5 1 0 0.5 1 
t (time in seconds) t (time in seconds) t (time in seconds) 

1.5 Amplitude scaling of sinusoidal signal 

Addition 

The addition of signals is given by equation of 1.21. 

y(t) = xl(t) + x2 (t) (1.21) 

3 

 2 2 2 

  1 

0 0 0 

-1 

-2 -2 -2 

0 0.5 0.5 1 -3 
0.5 1 

t (time in seconds) t (time in seconds) t (time in seconds) 

1.6 Example of the addition of a sinusoidal signal with a signal of constant amplitude 

(positive constant) 
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Physical significance of this operation is to add two signals like in the addition of the 

background music along with the human audio. Another example is the undesired addition of 

noise along with the desired audio signals. 

Multiplication 

The multiplication of signals is given by the simple equation of 1.22. 

y(t) = xl(t).x2 (t) (1.22) 

1 1 1 

! r Y Y Y V  

 1 
 1 1 

 
  

o o 0 
 

A -1 -1 

0 0.5 
0 0.5 

t (time in seconds) 
0.5 1 

t (time in seconds) t (time in seconds) 

1.7 Example of multiplication of two signals 

Differentiation 

The differentiation of signals is given by the equation of 1.23 for the continuous. 

d 
x(1)  

dt 
1.23 

The operation of differentiation gives the rate at which the signal changes with respect 

to time, and can be computed using the following equation, with At being a small 

interval of time. 

rl 
x ( t ) =  

x(t + At)— x(t) 

rat "yo- At 1.24 

If a signal doesn't change with time, its derivative is zero, and if it changes at a fixed 

rate with time, its derivative is constant. This is evident by the example given in figure 

1.8. 

1  1  

,    t   / t 
 

 _, 
717/-  

A i r  
-1  -1   1 

1.8 Differentiation of Sine - Cosine 
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Integration 

The integration of a signal x(t) , is given by equation 1.25 
r 

 ( r )ti r  
 J 

1.25 

2 2 

1.51. 
 1.5 

 1 

 

1 

0.5 0.5 

t (time in seconds) t (time in seconds) 

(a) fUl 

1.9 Integration of x(t) 

Operations on independent variables 

Time scaling 

Time scaling operation is given by equation 1.26 

y(t) = x(at) 1.26 

This operation results in expansion in time for a<1 and compression in time for a>1, as 

evident from the examples of figure 1.10. 

0.6 

 

0.6 

 

0.4 0.4 

0.2 0.2 

 0  0 

-0.2 -0.2 

-0.4 -0.4 

-0.6 -0.6 

0 
t (time in seconds) t (time in seconds) 
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1.5 1.5 

1 1 

0.5F 0.5 

 0  0 

-0.5 -0.5 

-1 -1 

-1.5 -1.5 

t (time in seconds) t (time in seconds) 

1.10 Examples of time scaling of a continuous time signal 

An example of this operation is the compression or expansion of the time scale that results in 

the fast-forward' or the 'slow motion' in a video, provided we have the entire video in some 

stored form. 

Time reflection 

Time reflection is given by equation (1.27), and some examples are contained in fig1.11. 

y(t) = x(—t) 1.27 

8 a 

 

 

6 6 

 
4  4 

2 2 

0 OF 

-2 -1 -2 -1 

t (time in seconds) t (time in seconds) 

(a) 
2 2 

1 1 

 0  
 

 
 0 

 

M -1 

-2 -2 
-2 M -2 M 

t (time in seconds) t (time in seconds) 

(b) 
1.11 Examples of time reflection of a continuous time signal 

Time shifting 

The equation representing time shifting is given by equation (1.28), and examples of this 
operation are given in figure 1.12. 
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y(t) = x(t - t0) 1.28 

3 3 

2F 2F 

1 1 

 0  
 

0 

I] M 

-2F -2 

-3 -3 
-4 -2 -4 -2 

t (time in seconds) t (time in seconds) 

(a) 

2 2 

/ 
 

1 

/  

1 

 0 
 1. 0  

1 I] 

-2 -4 
 

-2 
-2 -4 -2 
t (time in seconds) t (time in seconds) 

(b) 
1.12 Examples of time shift of a continuous time signal 

Time shifting and scaling 

The combined transformation of shifting and scaling is contained in equation (1.29), 

along with examples in figure 1.13. Here, time shift has a higher precedence than time scale. 

y(t) = x(at — t0) 1.29 

2 2 2 

1 

 
 

1  1 

 0 0  0 

-1 -1 . 

-2 -2 -2 
-5 0 -5 -5 
t (time in seconds) t (time in seconds) t (time in seconds) 

(a) 
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2 2 2 

1 1 1 

 0 0 0 

 1  E  

-2 -2 -2 
-5 0 -5 -5 

t (time in seconds) t (time in seconds) t (time in seconds) 

(b) 
1.13 Examples of simultaneous time shifting and scaling. The signal has to be shifted first 

and then time scaled. 

1.4 Elementary signals 

Exponential signals:  

The exponential signal given by equation (1.29), is a monotonically increasing function if 

a> 0, and is a decreasing function if a< 0. 

x (1) = c 
ur 

 .............................. (1.29) 

It can be seen that, for an exponential signal, 

x(t + a 
-1 

) = e.x(t) 

x(1 —a -1 

) 
-1 .x(t) 

 ............................ .(1.30) 

Hence, equation (1.30), shows that change in time by ±1/ a seconds, results in change in 

magnitude by e±1 . The term 1/ a having units of time, is known as the time-constant. Let us 

consider a decaying exponential signal 

x(!) e 
—at 

for t > 0 
  .................. (1.31) 

This signal has an initial value x(0) =1, and a final value x(oo) 

signal at five times the time constant is, 

0 . The magnitude of this 

x(51 a) 6.7x10-3 
 ............................ (1.32) 

while at ten times the time constant, it is as low as, 

x ( 1 0  /  a) 4.5x10
-;

 
 .................. (1.33) 

- 
It can be seen that the value at ten times the time constant is almost zero, the final value of the 

signal. Hence, in most engineering applications, the exponential signal can be said to have 

reached its fmal value in about ten times the time constant. If the time constant is 1 second, 

then final value is achieved in 10 seconds!! We have some examples of the exponential signal 

in figure 1.14. 
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15 
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0.51 

 
10 

Z.5 0.4F 

0.2  
0      

5 

r 

-0.21 .   0 
0 5 0 -5 -2 2 

time (sec) time (sec) 

(c) (d) 

Fig 1.14 The continuous time exponential signal (a) e—t , (b) et , (c) e—Iti , and (d) elti 

The sinusoidal signal: 

The sinusoidal continuous time periodic signal is given by equation 1.34, and examples are 
given in figure 1.15 

x(t)  = A sin(br ft) (1.34) 

The different parameters are: 

Angular frequency w = 2nf in radians, 

Frequencyfin Hertz, (cycles per second) 

Amplitude A in Volts (or Amperes) 

Period Tin seconds 

A   

,  
 

 

 

     

time (sec) 

The complex exponential: 

We now represent the complex exponential using the Euler's identity (equation (1.35)), 

e
°  

( cos + j sin 0) 
 .................. (1.35) 
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to represent sinusoidal signals. We have the complex exponential signal given by 

equation (1.36) 

= (cos(oi) + j sin(cot) ) 

e
- j

am
 = 

( c o s ( c o t )  —  j  sin(cot))  
 

 .......... (1.36) 

Since sine and cosine signals are periodic, the complex exponential is also periodic with 

the same period as sine or cosine. From equation (1.36), we can see that the real periodic 

sinusoidal signals can be expressed as: 
 

e i co - F  e - i  
cos(cot) 

2 

i 

efrot e- j cor 

sin(cot) 
 ) 

 .................... .(1.37) 

Let us consider the signal x(t) given by equation (1.38). The sketch of this is given in fig 1.15 

x(t) A( t)e  
'0(t) 

 ................................ (1.38) 

x(t)  

 co    

  

 

 

     

II A 

 

   

  

0 

a 

-co 

-2 0 1 2 -t/C0 0  

Time (t) Time (t) 

The unit impulse: 

The unit impulse usually represented as 8 (t) , also known as the dirac delta function, is 

given by, 

5(0  0 f o r   r 0: and 6 (r)dr I 
J 

 ....... (1.38) 

From equation (1.38), it can be seen that the impulse exists only at t = 0 , such that its area is 

1. This is a function which cannot be practically generated. Figure 1.16, has the plot of the 

impulse function 
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2 r  

 

    

+ 

2 

1.5 1.51 

 1 

 
1  

0.5F 0.51 

 
 

-1 0 1 2 -2 0 1 2 
t {sec) t (See) 

The unit step: 

The unit step function, usually represented as u(t) , is given by, 

( t ) 

 

t  O  
 H 

/  t  0  

 ..................... (1.39) 

2 2 

1.51• 1 .51. 

 1 1 

0.5 0.51. 

0 0 

-2  0 1 2 -2 -1 0 1 2 
I (sec) t ( sec) 

(a) (b) 

st   21 

1.51. 1.5 

 1 

 
1   

0.51. 0.5  

OF 0 

-2 0 1 -2 
t (sec) t( sec) 

(c) (d) 

Fig 1.17 Plot of the unit step function along with a few of its transformations 

The unit ramp: 

The unit ramp function, usually represented as r(t) , is given by, 

7'{ r '1 

r r (i) 
 

r  .  0  
 ................. (1.40) 
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 2    

i 1 

 
El7  0 

-2 0 1 2  0 -2 1 2 
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(c) ((I) 

Fig 1.18 Plot of the unit ramp function along with a few of its transformations 

The signum function: 

The signum function, usually represented as sgn(t) , is given by 

1 t > 0 

Sg11(t) =  0 t = 0 

1 t < 0 
 ...................................... (1.41) 
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2 2 
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fa) (b) 

2 2 

1 

 
11  

 
0 

 

-2 
-2 0 

-2 
-2  1 2 

t( sec. ) t(sec) 

[cl (d) 

Fig 1.19 Plot of the unit signum function along with a few of its transformations 

1.5 System viewed as interconnection of operation: 

This article is dealt in detail again in chapter 2/3. This article basically deals with system 

connected in series or parallel. Further these systems are connected with adders/subtractor, 

multipliers etc. 

1.6 Properties of system: 

In this article discrete systems are taken into account. The same explanation stands for 

continuous time systems also. 

The discrete time system: 

The discrete time system is a device which accepts a discrete time signal as its input, 
transforms it to another desirable discrete time signal at its output as shown in figure 1.20 

input Llisretie rime 

system 

output 

  

x lit I Y [ n I 

Fig 1.20 DT system 
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Stability 
A  s y s t e m  i s  s t a b l e  i f  ' b o u n d e d  i n p u t  r e s u l t s  i n  a  b o u n d e d  o u t p u t ' .  T h i s  c o n d i t i o n ,  d e n o t e d  

b y  B I B O ,  c a n  b e  r e p r e s e n t e d  b y :  

 

     
 Y [ n ]   for all n 

  
( 1 . 4 2 )  

H e n c e ,  a  f i n i t e  i n p u t  s h o u l d  p r o d u c e  a  f i n i t e  o u t p u t ,  i f  t h e  s y s t e m  i s  s t a b l e .  S o m e  e x a m p l e s  o f  

s t a b l e  a n d  u n s t a b l e  s y s t e m s  a r e  g i v e n  i n  f i g u r e  1 . 2 1  

Stable- ti c [to] 
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o u 
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 n 

Fig 1.21 Examples for system stability 

Memory 
T h e  s y s t e m  i s  m e m o r y - l e s s  i f  i t s  i n s t a n t a n e o u s  o u t p u t  d e p e n d s  o n l y  o n  t h e  c u r r e n t  i n p u t .  

I n  m e m o r y - l e s s  s y s t e m s ,  t h e  o u t p u t  d o e s  n o t  d e p e n d  o n  t h e  p r e v i o u s  o r  t h e  f u t u r e  i n p u t .  

E x a m p l e s  o f  m e m o r y  l e s s  s y s t e m s :  

y [ n ]  =  L a L t r j  

y [ n ]  =   '[n] 

4/11= a1 + a iv[n] + a2v2 +  a3v [ni 
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Causality: 

A system is causal, if its output at any instant depends on the current and past values of 

input. The output of a causal system does not depend on the future values of input. This 

can be represented as: 

y[n] CIF x[m] Efor m Chz 

For a causal system, the output should occur only after the input is applied, hence, 

x[n] Tor n 0 implies y[n] Tor n 0 
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All physical systems are causal (examples in figure 7.5). Non-causal systems do not exist. 

This classification of a system may seem redundant. But, it is not so. This is because, 

sometimes, it may be necessary to design systems for given specifications. When a system 

design problem is attempted, it becomes necessary to test the causality of the system, which if 

not satisfied, cannot be realized by any means. Hypothetical examples of non-causal 

systems are given in figure below. 

(.2mgal svdem 

5 

 

  

 

5 

0  

 

POINIMIIIINIIP! 

T 

41 4 

  

 . 

 
3 

2 2 

1  

olloo oop00000  w5r9r9 0_04 

-5 0 5 1D -5 0 5 10 

n n 

Invertibility: 

A system is invertible if, 

hiput  
input Invcrse 

of 

System A 

quiput 

 S~- teiu: 0  
1. [Hi I n ] viii]  

Linearity: 

The system is a device which accepts a signal, transforms it to another desirable signal, and is 

available at its output. We give the signal to the system, because the output is s 

Amplitude waling 

 t he n  

input 

System: A 

 
ITI11111 

System A 

Output 

   
sin] -'1111  a yin] 
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Superposition principle 

if 

y t )  
System: A 

k 10) A 
11Ct) 

Svstein A 

(1) 

  
2 

 

then 

 
ti NLEM!.A 

(y 'co+ Y10) ) 
 

 

Time 
invariance: 
A system is time invariant, if its output depends on the input applied, and not on the time of 

application of the input. Hence, time invariant systems, give delayed outputs for delayed 

inputs. 

Given input-uutput relation of Taue invariant nritrol 

5 

 

5 

o    
0 

v  

 O  
C 

I  ET  CF 

4 r 4 

 3F  3 

2 d 2 

1 r 1 

0 
I 1 9 1 9 4 0 1  

 1:
1 
0 0 13  

-5 0 5 10 -5 0 5 10 
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4 4 J 
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2   

 

 
if 
t  0   0   

-5 6 -5 10 

n n 

. Page 24 



 

 

 

Signals & Systems 10EC44 

Recommended Questions  

1. What are even and Odd signals 

2. Find the even and odd components of the following signals 

a. x(t) = cos t + sint +sintcost 

b. x(t) +1+ 3t2 + 5t3 + 9t4 

c .  x ( t )+  (1+  t 3 )cost 3 10t  

3. What are periodic and A periodic signals. Explain for both continuous and discrete cases.  

4. Determine whether the following signals are periodic. If they are periodic find the fundamental  

period. 

a. x (t) (c os(27ct) )2 

b. x(n) cos(2n) 

c. x(n) cos 27in 

5. Define energy and power of a signal for both continuous and discrete case. 

6. Which of the following are energy signals and power signals and find the power or energy of the 

signal identified. 

t, 0 1  

a. x(t)=42—t, 1 2  

iLi n otherwise 

n, 0<n<5 

b. x(n)=X10—n, 5<_n<_10 

lLi—n otherwise 

c. x(t) H  
15cosnt — 0 . 5 0 . 5  

LO 

d. x(n) 
sinnn, —4<n<4 

otherwise LO 
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UNIT 2: Time-domain representations for LTI systems —1 Teaching hours: 6 

Time-domain representations for LTI systems 

Convolution Sum and Convolution Integral. 
— 1: Convolution, impulse response representation, 
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UNIT 2  

Time-domain representations for LTI systems — 1 

2.1 Introduction: 

The Linear time invariant (LTI) system: 

Systems which satisfy the condition of linearity as well as time invariance are known as linear time 

invariant systems. Throughout the rest of the course we shall be dealing with LTI systems. If the 

output of the system is known for a particular input, it is possible to obtain the output for a number 

of other inputs. We shall see through examples, the procedure to compute the output from a given 

input-output relation, for LTI systems. 

Example — I: 

Given input-output relation  T TT 
,A.:terii 

5 

 

 _ 

T 

5 

  

g et 

e 

4 4 

3  3 

2 2 

1 I 

  0      0   a  
0 

 
0 

 
0 

 
0 

 
0 0  0 0 0 0 0 0 0  0 

-1 
-5 -5 

n U 

2.1.1 Convolution: 

A continuous time system as shown below, accepts a continuous time signal x(t) and gives out a 

transformed continuous time signal y(t). 

input Continuous time 

system 

+ •utput 

  

x(t) (t) 

Figure 1: The continuous time system 

Some of the different methods of representing the continuous time system are: 

i) Differential equation 
ii) Block diagram 

iii) Impulse response 

iv) Frequency response 

v) Laplace-transform 
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vi) Pole-zero plot 

It is possible to switch from one form of representation to another, and each of the representations 

is complete. Moreover, from each of the above representations, it is possible to obtain the system 

properties using parameters as: stability, causality, linearity, invertibility etc. We now attempt to 

develop the convolution integral. 

2.2 Impulse Response 

The impulse response of a continuous time system is defined as the output of the system when its 

input is an unit impulse, 8 (t) . Usually the impulse response is denoted by h(t) . 

6(t) Continuous time 

system 

h (t) 

  

unit impulse impulse response 

Figure 2: The impulse response of a continuous time system 

2.3 Convolution Sum: 

We now attempt to obtain the output of a digital system for an arbitrary input x[n], from 

the knowledge of the system impulse response h[n]. 

input impulse response 

11111] 

out put 

 
  

xlnl Yin] 

An input impulse response 

h[n] 

LTI system 

corresponding output 

1,[n] Yini 

  

x[1
,
21= ___  ipin I  1] y[n] . . + x[— 1]h[1.1 

— 1] 
— ,go Min] x[ 

0
1hi n 1 

— X[1]t5[71— 1] x[llhl n -1] 

• x1-2
1

,5
Tn 71 I x[ 2]h[n 2] I 

. Page 28 



 

 

 

 

 

 

 

 

Signals & Systems 10EC44 

_4n input impulse reNponK 

h[n] 

LTI system 

sPonding outPut 

x[n]  

  

x[n] 
 

YI n1 i Al in 1111 n —  5 x[m]3[n — m] 
 

time- (Januar; eat alyieiN 

input 

impulse respons e 

h[n] 

LTI syst ern 

output 

  
1[11] 

v[n] =  x[rz h[n] 

 \fit] 4 / 1 ]  *  h[ i i ]  

Methods of evaluating the convolution sum: 

Given the system impulse response h[n], and the input x[n], the system output y[n], 

is given by the convolution sum: 

 

\ = 
 

Problem: 

To obtain the digital system output y[n], given the system impulse response h[n], and the 

system input x[n] as: 

hii=11. -1.5. 3] 

4.3.2] , [-1 ,  , I 

1 

-1 4 -5.95 7.55 0.525 3.75 
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1. Evaluation as the weighted sum of individual responses 

The convolution sum of equation (...), can be equivalently represented as: 

y[n] 14 lJi[n 1] la [O]h[n] Dr[l]h[n 1] 

input x[n] impulse response: h[n] 
10 

" '' - " 

 

    

. 

1: 

.. 

 

1 
   

  

10   

61- 8 IH .. - .. 

6F - 61- ,  _ 

 41-  ..- 

 
21-  21. .. .. - 

  t  

L 
-2I- -21- 

-41. -4   

-6   
-2 2  

n n 

hin41 1 4-11.h[n-1-1] 

10 

    
la 

1;1 
 
e 

 5      
  

CN *- -* - -e. 
 

T # # g O  

 

     

-2 -2 
n n 

h[n] x[0].h(n] 
10 10 

..     

 I   

 
    

6 .. .,- ..   
 6 

 
1 

 ?   
 

     -5F 

-2 0 -2 0 2 4 6 
n n 
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h[n-1] xf1j.h[n-1] 

10 7 10 

5   .     
    . 

? o 
 

1 

 

 a 

CH 0 V 
  

 
 

a 

-5 -5 

-2 6 -2 6 
n n 

h[n-2] x[2].h[n-21 

10 10 

6 ... ...  ... ... 

0  o  0 
13 I o 

1 

     

 6 
 

OF OF 0  o  0 ?  I o 
1 

-5        

-2 2 6 -2 0 2 6 0 4 4 

n n 

Convolution as matrix multiplication: 

Given 

x[ii]= [xi  
-x 

i  
starting from N. 

and 

 m] starting from N 
w 

Step 1: Length of convolved sequence is NUM (L.+M-1) 

Step 2: The convolved sequence starts at i N + N 
x H 

Step 3: The convolution is given by the following matrix multiplication 

Ail 0 0 0 0 xi . h1 . 

y[ i +1] xi . 0 hi . 0 
xi 

vri+21 0 

hi 
0 . 

0 
2  x2 

  . . 0  

 
 

. . . . . hi 

yU+5] x L • .   

 
h 

m 
  

x L 

214     

' 
0 0 .. X 

L J 
0 0 

' 

h
I { L 
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The dimensions of the above matrices are: 

[NU b 1]=[NUM by M ][M by 1]= [NUM by L][L b ] 
 

For the given example: 

x[n] is of length L=4, and starts at Nx= -1 

h[n] is of length M=3 and starts at N H 0 

Step 1: Length of convolved sequence is NUM (L+M-1)=6 

Step 2: The convolved sequence starts at i=(-1+0(-1) 

y[—l] —1 0 0 —1 

y[0] 2.5 —1 0 4 

 0.8 2.5 —1 —5.95 

yl[2] 1.25 0.8 2.5 7.55 
 

- -  Y[3] 0 1.25 0.8 0.525 

[4] 0 0 1.25 3.75 

or 

y[-1]1 l 0 0 0 
1 

—1 

v[0] —1.5 0 —1 4 

Y[1] 3 —1.5 2.5 —5.95 

.).[2] 0 3 —1.5 1 0.8 7.55 

Y[3] 0 3 —1.5 1.25 0.525 

y[41 0 0 0 3 3.75 

Evaluation using graphical representation: 

Another method of computing the convolution is through the direct computation of each value 
of the output y[n]. This method is based on evaluation of the convolution sum for a single value 
of n, and varying n over all possible values. 

 

y[n]= ic[m]1 
 

Step 1: Sketch x[m] 

Step 2: Sketch h[-m] 
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Situp 3: Compute y[0] using: 
 

y[0] = y x[m]h[-m]  

Stu]) 4: 

which is the 'sum of the product of the two signals x[in] & h [ -

in] ' Sketch h[1-m], which is right shift of h[m] by 1. Compute 

y[1] using: Step 5: 

= 4170[1— 
Pm] . 

 

which is the 'sum of the product of the two signals x[in] & h[1-m]' 

Step 6: Sketch h[2-m], which is right shift of h[m] by 2. 

Step 7: Compute y[2] using: 

y[2] = I x[m]h[2 — In] 
 
 

which is the 'sum of the product of the two signals x[m] & h[2-m]' 

Step 8: Proceed this way until all possible values of y[n]. for positive 'n' are 

computed 

Step 9: Sketch h[4-m], which is left shift of h[-m] by 1. 

Step 10: Compute y[4] using: 
 

y[-1]= Y x[m]h[-1— m] 
 

Step 11: 

which is the 'sum of the product of the two signals x[in] & h[-

1-m]' Sketch h[-2-m], which is left shift of h[m] by 2. Compute 

y[-2] using: Step 12: 

y[-2] = I x[m],1[-2—m] 
 
 

 

which is the 'sum of the product of the two signals x[in] & h[-2-m]' 

Step 13: Proceed this way until all possible values of y[n], for negative 'if are 

computed 

x[m] h[-1 A-1 ) 
10 

"' 

 

 

10 

 

T 

10 

   

 

5 

r7 
 9 t 0 4  401 

5  5 
 

01.0 *0  9000004  0 0 0 0 0 0 0 o  t  

 -fir  

-5 0 -5 -5 

 171 rn 
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10 
'E[m] 

10 
h[-m] 

10 
y[0]=111.5-1-2.5) 

6   

o
f 

."

---

---

- -4 

6  

.li1DCa131-0 

 5     
li ati)01011E1-13-ID04  

  0  

-5 -5 -5 

-5  5 -5  a -5  5 

K[m] hit -m1 v[1]=1-3-3.75-1-0.8) 
10 10 10 

5 51 

 

 5 

 
7 

 o 
9 o of RAM 6  0  0 

  43  0 6 
 

- Er e a 

 

43-0-o 

 -5 
5 -5 5 5 

x[rn] h[2-rn] y[2]=17.5-1.2+1.25) 
10 ? 1 10 10 
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    5  5  
  0 

 a G it. 
v f a    

e-o Of a 
 

er 
 

13. 
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... P :-13 ii,  0€13-0-a--e     e 
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-5 -5 -5   
-5 -5 5 5 -5 5 

x[m] h[-m] y[3]=(2.4-1.875 ] 
10 
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10 10 

5I- —  5    6 -   

T 

 

  
Oto o o is E 

 

 A+ O t 0 0 0 0 0 i  o-o 4 
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.. -6 
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10 
x[m] 

10 
h [4- rn ] 

10.1 
y[4]=0,75) 
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Output. y[n.px[-11 h[n+1]+x[0] hEnj+x113_11n-11+42).h[ri-21 

7 

.  
 a 

 •• 

 0 

- - 

 

  a  

21- 

1 
• 

! 

 

   4k 

  0 5 4 6 e 
 

Evaluation from direct convolution sum: 

While small length, finite duration sequences can be convolved by any of the above three 

methods, when the sequences to be convolved are of infinite length, the convolution is easier 

performed by direct use of the 'convolution sum' of equation (...). 

10 for m < 0 
since: 

 for i ? 0 
 

u[ n — rn] = 
for (n — m) <0 

1 for (n — m) ?0 

0 for (—m) < n 

 1 for (—in)? n 

for m > n 

1 for  in n 

Example: A system has impulse response h[n] 

response. 
Solution: 

exp( 0/8)u[n] . Obtain the unit step 

 

of n1 L himiximl 
 

 

I lexp(-0.8(m))u[m]}{u[n — w 1} 
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)T{exp u[n — m]} 
 

 

 
{ exp(-0.8(m))} 

m=0 

{ exp(-0.8(m))) m=o 
 
 

  
(1 — (-0.8)) 

 
] y [ 7 1 ] = 1 ( - . ) u [ n . – r r ~  

o-n 

so- 

\ {exp (-0.8(n– in)} re[n –'n]1 

m141 

input:x[n] impulse response: h[n] ouput: y[n] 
2  2 

 . 

 

I  

 

 

 

1I c 

 

„ } 

 
 

-1 
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 -1 
10 15 10 15 10 15 

n n n 

input:x[n] impulse response: h[n] ouput: y[n] 
— 2 

  

 

 

 

 

o 0 1  
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0 5 10 
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n n n 

input:x[n] impulse response: hLn] 

Oe 

ouput: y[n] 
2 2 
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060 : Oso: - . 
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n n 

. Page 36 



 

 

 

 

 

 

  

 

10 5 0  5 10 

 

 

10 15 20 25 

 

   
 

0 5 1
0 

15 20 25 30 

O 5 10 15 20 25 30 

O 5 10 15 20 25 

  
 

 
20 

o 5 10 15 

 

 

Signals & Systems 10EC44 

input:4n] impulse response: LIN oupul: An] 
,  2  
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n n n 

inputx[n] 
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-2  
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Evaluation from Z-transforms: 

Another method of computing the convolution of two sequences is through use of Z-transforms. This 

method will be discussed later while doing Z-transforms. This approach converts convolution to 

multiplication in the transformed domain. 

.4nalysis using: Z Transform 
 

input. -Kin] 

impulse respons e 

h[111 

11[n] i 

output An] 
   
 

4 n I 4-->-:1( I2' I 
 

  I 

viz I X1ZI.HEZI 

Evaluation from Discrete Time Fourier transform (DTFT): 

It is possible to compute the convolution of two sequences by transforming them to the frequency 

domain through application of the Discrete Fourier Transform. This approach also converts the 

convolution operator to multiplication. Since efficient algorithms for DFT computation exist, this 

method is often used during software implementation of the convolution operator. 

liudysis using: Diserete-time Fourier Trans" Orm (DTFT) 

 

impulse response 

h[n] 

 
 

uutpul y[ n] 
1I•  

Ya.  

 
iln] < _____ — 

>Y[-Ki 

 
   

YIK KI-HIKI  

Evaluation from block diagram representation: 

While small length, finite duration sequences can be convolved by any of the above three methods, 

when the sequences to be convolved are of infinite length, the convolution is easier performed by 

direct use of the 'convolution sum' 
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2.4 Convolution Integral: 

We now attempt to obtain the output of a continuous time/Analog digital system for an arbitrary 

input x(t), from the knowledge of the system impulse response h(t), and the properties of the impulse 

response of an LTI system. 

The output y(t) is given by, using the notation, y(tR{x(t)}.  

y(t) Rfx(t)1 

{:f 
x(r)(50 -  r)d-r 

f (r) (t -r)} dr 

 

x(r)h(t -2-)dr 
 

x(t) h(t) 

An input impulse response 

 

kviatni 

corresponding output 

x(L) Y(t) 

 0 

x(t) = J x(r)45(t—r)dr Y(1) 
 

x(r)1*-1
-
)cir 

-:c 

Methods of evaluating the convolution integral: (Same as Convolution sum) 

Given the system impulse response h(t), and the input x(t), the system output y(t), is given by the 

convolution integral: 

x(r)h(t —r)dAr 
 

 

 

Some of the different methods of evaluating the convolution integral are: Graphical representation, 

Mathematical equation, Laplace-transforms, Fourier Transform, Differential equation, Block diagram 

representation, and finally by going to the digital domain. 
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Recommended Questions  

1. Show that if x(n) is input of a linear time invariant system having impulse response h(n), then 

the output of the system due to x(n) is 
00 

y (n) = Ex(k)h(n-k) 
k . —oo 

2. Use the definition of convolution sum to prove the following properties 
1. x(n) * [h(n)+g(n)]=x(n)*h(n)+x(n)*g(n) (Distributive Property) 

2. x(n) * [h(n)*g(n)]=x(n)*h(n) *g(n) (Associative Property) 
3. x(n) * h(n) =h(n) * x(n) (Commutative Property) 

3. Prove that absolute summability of the impulse response is a necessary condition for stability 

of a discrete time system. 

4. Compute the convolution y(t)= x(t)*h(t) of the following pair of signals: 

(a) x(t) = -a <t 
-<a - a  < t  a  < 

0 o t h e r w i s e h ( t ) -  otherwise 

(b)  x( t )  
{0 

0 < r < T 
otherwise

' Mr) = 

  
 0 < t 2T 

otherwise 

(c)  x(!) - u(r  -  

5. Compute the convolution sum y[n] =x[n]* h[n] of the following pairs of sequences: 

(a) x[n] - cg[n], h[ni - 2%4 - 

nj (b) 
x[n] 

r[+ ]- u[n - N1, Mill- a' uf al, 0 <a 

< 1 (c) x[n] ()" 14 n], Merl = St -  - 11 
 

6. Show that if y (t) =x(t)* h(t), then 

yP(i) - x'(1)*c  h( )) -- xx((e01** 

hh'r((tt))  7. Let y[n] = x[n]* h[n]. Then show that 

I ft, j* Mil a y[n — rt, 

8. Show that 

ne- N - I 

Xani glX2.[n] x irk]xjn -kJ  
 

for an arbitrary starting point no. 
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UNIT 3: Time-domain representations for LTI systems — 2 Teaching hours: 7 

Time-domain representations for LTI systems — 2: properties of impulse response representation, 
Differential and difference equation Representations, Block diagram representations. 

TEXT BOOK 

Simon Haykin and Barry Van Veen "Signals and Systems", John Wiley & Sons, 2001.Reprint 
2002 

REFERENCE BOOKS 

1. Alan V Oppenheim, Alan S, Willsky and A Hamid Nawab, "Signals and Systems" Pearson 

Education Asia / PHI, 2nd edition, 1997. Indian Reprint 2002 

2. H. P Hsu, R. Ranjan, "Signals and Systems", Scham's outlines, TMH, 2006 

3. B. P. Lathi, "Linear Systems and Signals", Oxford University Press, 2005 

4. Ganesh Rao and Satish Tunga, "Signals and Systems", Sanguine Technical Publishers, 2004 
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UNIT 3:  

Time-domain representations for LTI systems — 2 

3.1 Properties of impulse response representation: 

Impulse Response 

Def. Linear system: system that satisfies superposition theorem. 

1 npui   netw ork   O l s i t P U t  

x(t) h(t) 
X(f) riff) ) 

For any system, we can define its impulse response as: 

h(t) y(t) whe (t) 8(t) 

For linear time invariant system, the output can be modeled as the convolution of the impulse 

response of the system with the input. 

C 

y(t)  * x(t)  h(t) f x(r)h(t r)dr 
 

For casual system, it can be modeled as convolution integral. 

co 

y(t) f x(r)h(t - r)dr 
o 

3.2 Differential equation representation: 

General form of differential equation is 

V  di( 
Y(t) 

I b k
&

i f X ( t )  I dtk 

  

where ak and bk are coefficients, x(.) is input and y(.) is output and order of differential or 

difference equation is (M,N). 

Example of Differential equation 

• Consider the RLC circuit as shown in figure below. Let x(t) be the input voltage source and 

y(t) be the output current. Then summing up the voltage drops around the loop gives 
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Ryl(t) ± L—y(t) ± 
1 

A - 0 d t  x(t) 
dt C  -  

R L 

 
FY

-
se

-
Y

.
\ 

 
 

 
Y(I) C   

- 

3.3 Solving differential equation: 

A wide variety of continuous time systems are described the linear differential equations: 

d y i ( t )  

M dk 

 I bk __________ dtkx(t) 

k=0  

Just as before, in order to solve the equation for y(t), we need the ICs. In this case, the ICs are 

given by specifying the value of y and its derivatives 1 through N-1 at t = 0- 
 Note: the ICs are given at t = 0- to allow for impulses and other discontinuities at t = 0. 

Systems described in this way are 

linear time-invariant (LTI): easy to verify by inspection 

Causal: the value of the output at time t depends only on the output and the input at times 0 < 

t < t 
As in the case of discrete-time system, the solution y(t) can be decomposed into y(t) 
yh(t)+yP(t) , where homogeneous solution or zero-input response (ZIR), yh(t) satisfies the 

equation 

 

 The zero-state response (ZSR) or particular solution yp(t) satisfies the 

equation 

) ( ( t t ) )  ± +  I a '  
AT-1 

„
'I)((tt)) I b ix(m - 

n7 
(t), 

1=0 1=0 
t > 0 

with ICs yp(0
-) y p  (0 - )  

1) 
... y 

1) 
(Ø- ) 0. 

Homogeneous solution (ZIR) for CT 

 A standard method for obtaining the homogeneous solution or (ZIR) is by 

setting all terms involving the input to zero. 

I aly)71) (t) 
 

0, t> 0 
0 
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and homogeneous solution is of the form 

IV 

Yh (t)  
i= 1 

where ri are the N roots of the system's characteristic equation 

N 
0  

k=O 

and C1, . . . , CN are solved using ICs. 

Homogeneous solution (ZIR) for DT 

 The solution of the homogeneous equation 

N 

Eakyh[n k] 0 
k=0 

is 

 
c  

where ri are the N roots of the system's characteristic equation 

 
akr 

N—A 

0 

and , CN are solved using ICs. 

Example 1 (ZIR) 

 Solution of 

df2 y(t)± 5 ____ d rv'it) ± 6y(t) 
d 

2x(t) ±  
 

x(t) 
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Yh(t) e-3t + c2e 
-2t 

(-1 

 Solution of y /7] 9/16y[n 2] x[n 1] is yh[n] ci (3/ 4)a+ c2 (-3/ 4) 

Example 2 (ZIR) 

 Consider the first order recursive system described by the difference  

equation y n] py[n 1] x[n], find the homogeneous solution. 

 The homogeneous equation (by setting input to zero) is  y n] py n 

1] 0. 

 The homogeneous solution for N 1 is yh[n] cirri'. 

 r1 is obtained from the characteristics equation r1 p 0, hence r1 p 

 The homogeneous solution is yh[n] cip' 

Example 3 (ZIR) 

 Consider the RC circuit described by y(t) + RCly(t) x(t)  

 The homogeneous equation is y(t) + RC4 .y(t) 0 

 Then the homogeneous solution is 

Yh(t) c ie i  

where r1 is the root of characteristic equation 1 + RCr1 u 

 This gives r1 RC 

 The homogeneous solution is 

Yh(t) ci 0' 
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Particular solution (ZSR) 

 Particular solution or ZSR represents solution of the differential or dif 

ference equation for the given input 

 To obtain the particular solution or ZSR, one would have to use the  

method of integrating factors. 

 yp is not unique. 

 Usually it is obtained by assuming an output of the same general form 

as the input. 

 If x[n] an then assume yp[n] can and find the constant c so that 

vp[n] is the solution of given equation 

1.1.3 Examples 

Example 1 (ZSR) 

 Consider the first order recursive system described by the differencE 

equation y[n] u rn  1] x[n] , find the particular solution when x[n] 

(1/2)n. 

 Assume a particular solution of the form yp[n] cp(1 / 2)11 
  Put the values of yp[n] and x n] in the equation then we get  cpqr 

(D — 

n-1 
p c p w   

 Multiply both the sides of the equation by (1 /2)n we get cp 1/(1 — 

2p). 

 Then the particular solution is 

Ypini 
1 

(1)1 
1 2p  — 
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 For p = (1/2) particular solution has the same form as the homoge- 

neous solution 

 However no coefficient cp satisfies this condition and we must assume 

a particular solution of the form yp[n] = cpn(112)n. 

 Substituting this in the difference equation gives c„n(l 2p) + 2Pcn — 

1 

 Using p (1/2) we find that cp 1. 

Example 2 (ZSR) 

 Consider the RC circuit described by y(t) -F RC 1)
,
(0 x(t) 

 Assume a particular solution of the form yp(t) cl cos(tu0t)+c2 sin(wüt). 

 Replacing y(t) by yp(t) and x(t) by cos(coot) gives 

ct cos(coot) +c2 sin(coot) —Moog sin(coot) + Mo0c2cos(coot) cos (coot) 

 The coefficients c1 and c2 are obtained by separately equating the co- 

efficients of cos(coot) and sin(coot), gives 

1 RCCoo 
 

1+ (ROD0 ) 2 
and c2 

1 + ( Ra00) 2 

 Then the particular solution is 

1 RCcoo 
YD(t) 

1 + (R0.00)2 

cos(c)ot) + 
1 + (RC030)2 

sin(c)ot) 

Complete solution 

 Find the form of the homogeneous solution  yh from the roots of the 

characteristic equation 

 Find a particular solution yp by assuming that it is of the same form as the 

input, yet is independent of all terms in the homogeneous solution 

 Determine the coefficients in the homogeneous solution so that the  

complete solution y yh ± yp satisfies the initial conditions 
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3.4 Difference equation representation: 

 A wide variety of discrete-time systems are described by linear difference 

equations: 

y[n] + X aky[n — k] 
 m 

I bkx[n — k], n 0,1,2, 
k=1 k=0 

where the coefficients a1, , aN and .60, , bm do not depend on n. In 

order to be able to compute the system output, we also need to specify 

the initial conditions (ICs) y[-1],y —2] y —N 

 Systems of this kind are 

— linear time-invariant (LTD: easy to verify by inspection 

— causal: the output at time n depends only on past outputs An — 

, y[n — N and on current and past inputs x[n] , x[n . ,x[n 1], . 

M] 

 Systems of this kind are also called Auto Regressive Moving-Average 

(ARMA) filters. The name comes from considering two special cases. 

 auto regressive (AR) filter of order N, AR(N): bo bm 0 

A 

0 Y  +  I  ak Y i n  n 0, 1, 2, .. 
k=1 

In the AR case, the system output at time n is a linear combination of 

/V past outputs; need to specify the ICs A-1], , y[—N . 

 moving-average (MA) filter of order N, AR(N) : ao  0 

M 

An] I  b  - k ]  n 0 , 1, 2, . 

k=0 

In the MA case, the system output at time n is a linear combination of 

the current input and M past inputs; no need to specify ICs. 

 An ARMA(N.  M )  f i l ter  i s  a  combinat ion  of  both.  

  Let us first rearrange the system equation 

E aky[n 

N M 

 k] + E bkx[n k] 12 0,1, 2, ... 
k=1 k=o 
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 at i1 () 

y[0] I aky[— Id+ 
N 

I bkx[—k] 
 k=1 

   k=0 
  

depends on ICs depends on input x[O]x[— M 

 at n 1 
N 

y[1] I aky-j1 k ± Lbkx[l k] 
k=1 I(=o 

After rearranging 

 M 

yjl] a ly[0] I ak+iyi—k]+ I bkx[l — k] 

k=1 
  k=0 

  

depends on ICs depends on inputx[1]...x[1—M] 

. at n 2 
N M 

y[2] I aJ(y2 — k  bkx [2  —  k ]  

 k=0 

After rearranging 

y2] a1y_1] a2y[0] 

N— I 

I 1 bkx[l — k] 

Al 

ak+iy_—k1+ 
 k=0 

 
    

depends oonn  ICs depends on input 44..42—M 

Example of Difference equation 

 An example of II order difference equation is 

y[n] + y n 11 + Tiy]n 2] x[n] ± 2,4n 1] 

 Memory in discrete system is analogous to energy storage in continu- 

ous system 

 Number of initial conditions required to determine output is equal to 

maximum memory of the system 

Initial Conditions 

Initial Conditions summarise all the information about the systems past that is 

needed to determine the future outputs. 
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 In discrete case, for an Nth order system the N initial value are 

y[—N ,y[—N+1] , . . . ,y[  1] 

 The initial conditions for Nth-order differential equation are the values of 

the first N derivatives of the output 

YWIt=o, d „„t2Y(t)It=0, 
d2 dN-i 

• • • 
i l iv_ iY( )1 ( -0  

 

Solving difference equation 

 Consider an example of difference equation y[n] ± ay[n 1] x[n], 

 0 12 .. 
, ,  . with A 1] 0 Then 

v[0] ay[ 1] + x[0] 

y[1] ay[0] +x[1] 

a(—ay[ 1] +x[0]) + x[1] 

a2 y[-1] ax[0]) +x[1] 

y[2] ay[1] +x[2] 

a(— a2 Y[— 1] ax[0] + x[1]) +x[2] 

a3A 1] + a2x[0] ax[1] + x[2] 

and so on 

 We get y n] as a sum of two terms: 

Y (— ar  Y —1] ± Ei=o(— a)   , n 0 1, 2, 

 First term (—a)n1-1A-1] depends on IC's but not on input 
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 Second term o(—a)nix[i] depends only on the input, but not on the 

IC's 

 This is true for any ARMA (auto regressive moving average) system: 

the system output at time n is a sum of the AR-only and the MA-only 

outputs at time 17 

 Consider an ARMA (NT,M) systemyjn] 11+14M 0 bP c[n I  a A n  
f 1 

r], n 0, 1, 2, ... with the initial conditions y_-1], ,y[—N]. 

 Output at time 12 is: 

Y[n] Yh[n] ± Yp [n] 

where yh [n] and yp[n] are homogeneous and particular solutions 

 First term depends on IC's but not on input 

 Second term depends only on the input, but not on the IC's  

 Note that yh [n] is the output of the system determined by the ICs only  

(setting the input to zero), while yp[n] is the output of the system determined 

by the input only (setting the ICs to zero). 

 yh[ri] is often called the zero-input response (ZIR) usually referred as 

homogeneous solution of the filter (referring to the fact that it is deter- 

mined by the ICs only) 

 yp[n] is called the zero-state response (ZSR) usually referred as partic- 

ular solution of the filter (referring to the fact that it is determined by the 

input only, with the ICs set to zero). 
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.D44  0 . 0 0 0 0 0 4 0 4 c . 0 0 0 4 4 0 0 0 , 7 0 0 0 0  0000- 

 
[N] v 

0.5 

02 
 50 

Step response of a system 

Figure 1.2: Step response 

 Consider the output decomposition yjn]  +  y p [ n ]  o f  a n  A R M A  

(N, M) filter 

N 

4 ± I bix[n — i], 

M 
An] I a iy[n n 0.1. 2 

i=1 i=o 

with the ICs y —1], ...  

 The output of an ARMA filter at time n is the sum of the ZIR and the ZSR 

at time n. 

Example of difference equation 

 example: A system is described by y[n] 1.143y[n 1]+ 0.4128y[n 

2] = 0.0675x[n] ± 0.1349x n 1] ±0.675x[n — 2] 

 Rewrite the equation as y n] 1.143y[n 1] 0.4128y n-2] ± 0.0675x[n] ± 

0.1349x[n — 1] ± 0.675x[n 2] 

3.5 Block Diagram representation: 
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 A block diagram is an interconnection of elementary operations that  

act on the input signal 

 This method is more detailed representation of the system than impulse 

response or differential/difference equation representations 

 The impulse response and differential/difference equation descriptions 

represent only the input-output behavior of a system, block diagram 

representation describes how the operations are ordered 

 Each block diagram representation describes a different set of internal  

computations used to determine the system output 

 Block diagram consists of three elementary operations on the signals:  

— Scalar multiplication: y(t) cx(t) or y[n] x[n], where c is a 

scalar 

 Addition: y(t) x(t) + w(t) or y[n] x[n] + w[n]. 

 Block diagram consists of three elementary operations on the signals:  

— Integration for continuous time LTI system:  y(t) ft  x(ti) dit 

Time shift for discrete time LTI system: y[n] x[n 1] 

 Scalar multiplication: y(t) cx(t) or y[n] x[n], where c is a scalar 

3.,(1) = cx(F) 
  

y [ n ]  = e x [ n ]  x[n] 

Scalar  Mu lt ip l icat ion  

x(t) 

 

y(i)=40+ w(t) 

x[n] 
 • 

xinj + win] 
At 

= 

W(i) 

W[11] 
A d d i t i o n  

 Addition: y(t) x(t) + w(t) or y[n] x[n] + _n] 

 Integration for continuous time LTI system: y(t) .1f  . x(i) di 

Time shift for discrete time LTI system: y[n] x[n 1] 
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,i r y(r) = j x(t)61-1 

 
1—  = ./c in - 

Integration  and timeshifting 

     

x[n] 
I 

  
tit r~ 

Z 411.-- V[r1] 
  

1 4 
t 

I S 

I 

o 
  

 
w  .4.  0 

I 

I 

I 

4 4 I 

S 

   4  

 

Figure 1.10: Example 1: Direct form I 

Example 1 

 Consider the system described by the block diagram as in Figure 1.10 

 Consider the part within the dashed box 

 The input x[n] is time shifted by 1 to get x[n 1] and again time shifted 

2]. The scalar multiplications are carried out and by one to get x[n 
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T 

y[n] 

1 

 

31 

Figure 1.11: Example 2: Direct form I 

they are added to get w[n] and is given by 

w[n] box[n] ± b 1 x[n 1] ± b2x[n — 2] 

 Write y[n] in terms of w[n] as input y[n] w[n] al An 1] a2y[n 2] 

 Put the value of w[n] and we get y[n] a 1 y] n 1] a 2 34 n 2] ± b 0 x] n] 

± bix[n — 1] ± b2x[n 2] 

and y[n] + a iy[n — 1] ± a2y[n 2] box[n] ± bix[n 1] ± b2x[n 2] 

 The block diagram represents an LTI system 

Example 2 

 Consider the system described by the block diagram and its difference 

equation is y[n] ± (1 / 2) y[n 1] (1 / 3) An 3] x[n] ± 2 x[n 2] 

Example 3 

 Consider the system described by the block diagram and its difference 

equation is y[n] ± (1 / 2) y[n 1] + (1 / 4)y[n 2] x[n — 1] 

x [n] • • s —•- y y in] 

 

t 

S 

t 

1 S 
 4 

 • 
(13) 

Figure 1.12: Example 3: Direct form I 

. Page 55 



 

 

    

   

  

 

  

  

  

   

 

 

Signals & Systems 10EC44 

 Block diagram representation is not unique, direct form II structure of 

Example 1 

 We can change the order without changing the input output behavior  

Let the output of a new system be f [n] and given input x[n] are related 

by 

f[n] al f[n 1] a2 f[n 2] ± x[n] 

 The signal f[n] acts as an input to the second system and output of second 

system is 

n] bo f[n] ± fit f[n 1] ± b2 f[n 2] 

 The block diagram representation of an LTI system is not unique 

Continuous time 

 Rewrite the differential equation 

11/1 dk 

ak __ -t k 

At) 

 Ibk _________ d tk 

x(t) 

k=0 k=o 

as an integral equation. Let 1(°)(t)  v(t) be an arbitrary signal, and 

set 

  v(11-1)(t)cl-c, n 1. 2_ 3  - 
./1 

where v(n)(t) is the n-fold integral of v(t) with respect to time 

 Rewrite in terms of an initial condition on the integrator as 

v00(t) v@i– 1) (T)cf -r ± v(n) (0) , n 1, 2, 3, 
o 

 If we assume zero ICs, then differentiation and integration are inverse  

operations, ie. 

d v "   ,  t >  0  a n d  n  1, 2, 3, . _ 
dt 

 Thus, if N > Al and integrate N times, we get the integral description 

of the system 

 
nN aky(N–k)(t)  I k 0Mbkx(N -k)  ( t )  

 For second order system with ao  1, the differential equation can be 
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• 
 

 
 

 _v y(t)  • 

 4 t 

x'11
(7) 

b1 

 E  4 44 v"kr) 0   

t 4 m t 

x(2)0) 

—an 
• 
 

4 
 

Direct form I structure 

Figure 1.25: Direct form 1 
 

written as 

y(t) y
(1)

(t) aoy 
(2) 

(t) + b2x(t) + aix
(1)

(t) +box
(27

 (t) at 

f(t)  

x(r) 
 

 
 

 

* *   

 

—a 1 

 
* 

       
IWO') 

 

4 
 

i L 

, _ 
, 

    

Direct form 11 structu 1 e 
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Recommended Questions 

1. Show that 

( a )  x ( t ) *  - x(r) 

(b )  x (z ) *  SO to) - to) 

x(t)* u(t).. x(r)dr 
 

( d )  x ( t ) *  u ( t  t„) 
 

to 

x ( r )d r   

By definition (2.6) and Eq. (1.22) we have 

x (1 ) * . 6 ( i )  -  1  x ( 7 ) 6 ( 1   
 

By Eqs. (2.7) and (L22) we have 

x(1)*45(i - 10) 8(t  r to)x(t - 7) dr 

- x(1 -  x(r -10) 

By Eqs. (2.6) and ( if. /9) we have 

x(r)*u(r) - i x(7)u(i  is x(r) dr 

since u(r — r) . 
7< t 

2. Evaluate y (t) = x (t) * h(t), where x (t) and h (t) are shown in Fig. 2-6 (a) by analytical 

technique, and (b) by a graphical method. 

 

1 I 

  
r] 1 0  

2-6 

3. Consider a continuous-time LTI system described by 

_V( 0  11X(1)) = = 
1 r 

X(T)Ctr  
4. T _ T/2 

a. Find and sketch the impulse response h(t) of the system. 
b. Is this system causal? 

5. Let y (t) be the output of a continuous-time LTI system with input x(t) . Find the output of 
1 (t) is the first derivative of x(t) the system if the input is x

l
(t) , where x 

6. Verify the BIBO stability condition for continuous-time LTI systems. 
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7. Consider a stable continuous-time LTI system with impulse response h (t) that is real and even. 

Show that Cos wt and sin wt are Eigen functions of this system with the same real Eigen value. 

8. The continuous-time system shown in Fig. 2-19 consists of two integrators and two scalar 

multipliers. Write a differential equation that relates the output y(t) and the input x(t ). 

 4 
 

 7 
E 
I 

 

 

 

 
  

J 1 

 
4 
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UNIT 4: Fourier representation for signals —1 Teaching hours: 6 

Fourier representation for signals — 1: Introduction, Discrete time and continuous time Fourier 

series (derivation of series excluded) and their properties 

TEXT BOOK 

Simon Haykin and Barry Van Veen "Signals and Systems", John Wiley & Sons, 2001.Reprint 
2002 

REFERENCE BOOKS 

1. Alan V Oppenheim, Alan S, Willsky and A Hamid Nawab, "Signals and Systems" Pearson 

Education Asia / PHI, 2nd edition, 1997. Indian Reprint 2002 

2. H. P Hsu, R. Ranjan, "Signals and Systems", Scham's outlines, TMH, 2006 

3. B. P. Lathi, "Linear Systems and Signals", Oxford University Press, 2005 

4. Ganesh Rao and Satish Tunga, "Signals and Systems", Sanguine Technical Publishers, 2004 
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UNIT 4  

Fourier representation for signals — 1 

4.1 Introduction: 

Fourier series has long provided one of the principal methods of analysis for mathematical 

physics, engineering, and signal processing. It has spurred generalizations and applications that 

continue to develop right up to the present. While the original theory of Fourier series applies to 

periodic functions occurring in wave motion, such as with light and sound, its generalizations often 

relate to wider settings, such as the time-frequency analysis underlying the recent theories of wavelet 

analysis and local trigonometric analysis. 

 In 1807, Jean Baptiste Joseph Fourier Submitted a paper of using trigonometric series to represent 
 any periodic signal. 

 But Lagrange rejected it! 

 In 1822, Fourier published a book "The Analytical Theory of Heat" Fourier's main contributions: 

Studied vibration, heat diffusion, etc. and found that a series of harmonically related sinusoids is 

useful in representing the temperature distribution through a body. 

 He also claimed that "any 

were still imprecise and it remained for P.L.Dirichlet in 1829 to provide precise conditions under 

which a periodic signal could be represented by a FS. 

" periodic signal could be represented by Fourier series. These arguments 

 He however obtained a representation for aperiodic signals i.e., Fourier integral or transform 

 Fourier did not actually contribute to the mathematical theory of Fourier series. 

 Hence out of this long history what emerged is a powerful and cohesive framework for the analysis 

of continuous- time and discrete-time signals and systems and an extraordinarily broad array of 

existing and potential application. 

The Response of LTI Systems to Complex Exponentials: 

We have seen in previous chapters how advantageous it is in LTI systems to represent signals as a 

linear combinations of basic signals having the following properties. 

Key Properties: for Input to LTI System 

1. To represent signals as linear combinations of basic signals. 

2. Set of basic signals used to construct a broad class of signals. 

3. The response of an LTI system to each signal should be simple enough in structure. 

4. It then provides us with a convenient representation for the response of the system. 

5. Response is then a linear combination of basic signal. 

Eigenfunctions and Values : 

 One of the reasons the Fourier series is so important is that it represents a signal in terms of 

eigenfunctions of LTI systems. 
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the output is y(t) 

 When I put a complex exponential function like x(t) 

H(s)x(t) = H(s) ejwt where H(s) 
i 
s 

ejwt through a linear time-invariant system, 

a complex constant (it does not depend on 

time). 

 The LTI system scales the complex exponential ejwt 

Historical background 

There are antecedents to the notion of Fourier series in the work of Euler and D. Bernoulli on 

vibrating strings, but the theory of Fourier series truly began with the profound work of Fourier on 

heat conduction at the beginning of the century. In [5], Fourier deals with the problem of describing 

the evolution of the temperature of a thin wire of length X. He proposed that the initial temperature 

could be expanded in a series of sine functions: 

 b„ sin nx (I 1 

)   
f (x) sinnx dx. (2) 

jo 

The Fourier sine series, defined in EiTs (1) and (2), is a special case of a more general 

concept: the Fourier series for a periodic function_ Periodic functions arise in the 

study of wave motion, when a basic waveform repeats itself periodically. Such 

periodic waveforms occur in musical tones, in the plane waves of electromagnetic 

vibrations, and in the vibration of strings_ These are just a few examples_ Periodic 

effects also arise in the motion of the planets, in ac-electricity, and (to a degree) in 

animal heartbeats_ 

A  func t i on  f  i s  sa id  to  have  pe r iod  F  i f  f  +  F )  f  (x )  for  a l l  x_  For 

trict our discussion to functions of period 27r 

= 
notational simplicity, we shall 

There is no loss of generality in doing so, since we can always use a simple change 

of scale s (Pi 27r)t to convert a function of period  F into one of period 27r_ 

If the function f has period 2-7r, then its Fourier series is 

oc 

 (4) 

with Fourier coefficients co, a,, and bi, defined by the integrals 

CO 

1 
f (x) dx (5) 

4 i 
 

 
f (x) cos n.x dx,  an 

7r 

h, 
1 , 

(x) sin nx dx. I i 1 
7 

The following relationships can be readily established, and will be used in subsequent sections 

for derivation of useful formulas for the unknown Fourier coefficients, in both time and 

frequency domains. 
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I s in (kwo t )d t  = 1 c os(kwot)dt 

T T 

(1) 
0 0 

=0 

I s in e  ( k W o t ) d t  =  1  c o s t  ( k W o t ) d t  

T T 

(2) 
0 0 

T 
  2 

1  C O S ( k W o t ) s i n ( g w o t ) d t  = 0 

T 

(
3
) 

 

1 sin(kwot)sin(gwo t)dt = 0 (4) 

 

1 cos(kwot) cos(gwot)dt = 0 (
5
) 

0 
where 

w0 2,f (6) 

 
(7) f = 

T 

where f and T represents the frequency (in cycles/time) and period (in seconds) respectively. Also, 

k and g are integers. 

A periodic function f (t) with a period T should satisfy the following equation f 

(t + T)= f (t) (8) 

Example 1 

Prove that 
ir 

1 sin(kwot) = 0 
0 

for 

wo 2#' 

 
f = 

T 

and k is an integer. 

Solution 

Let 

1 sin(kwot)dt 

T 

A = (
9
) 

0 

 =  [kw )cos(kwot)] 

A = T)—— ccooss((00))]1 (10) 
[kw )jcc os(kwo 

=  [kw jcos(k27r) — 
1] 

=0 
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Example 2 

Prove that 
 

7' 
f sin

2
(kwot) =  

0 2 

for 

wo 27
-
tf 

 
f = 

T 

and k is an integer. 

Solution 

Let 
T 

B = f sin
2
(kwot)dt (11) 

0 
Recall 

sin
e
 (a) =  

1— cos(2,a) 
(12)  

2 

Thus, 

B= IL—2 — -1 cos(2kwot
1
t (13) 

2 

11
T 

[ L2  j ‘  — 2 2 ) ) s i n ( 2 k w o t )  
Jo 

B 
 [2— 

1 
 sin(2kwoT)1 —rL01i (14) 

4kwo 

T 
*27c)    [4kw )sin(2k 2 

T 
  2 

Example 3 

Prove that 
 

1 sin(gwot)cos(kwot) = 0 
0 

for 

wo 27
-
tf 

 
f = 

T 

and k and g are integers. 

Solution 

Let 

1 sin(gwot)cos(kwot)dt 

T 

C = (15) 
0 

Recall that 
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sin(a + /3) = sin(a)cos(i3)+ sin(fl)cos(a) (16) 

Hence, 

f[sin[(g  k)wot] — sin(kwot) cos(gwot)kit 

T 

C = + (17) 

 

f sin[(g  k)wotkit — f sin(kwot)cos(gwot)dt 

T 

+ (18) 
0 0 

From Equation (1), 

1 [sin(g  k)wot]dt = 0 

T 

+ 
0 

then 

i sin(kwot) cos(gwot)dt 

T 

C = 0 — (19) 
0 

f sin(gwot) cos(kwot)dt — f sin(kwot)cos(gwot)dt 

T T 

Adding Equations (15), (19), 2C = 
0 0 

f sitagwot)— (kwot)kit = 1 sin[(g — k)w odd t 

T T 

=  (20) 
0 0 

2C = 0 , since the right side of the above equation is zero (see Equation 1). Thus, 

1 sin(gwot)cos(kwot)dt = 

T 

C = 0 (21) 
0 

=0 

Example 4 

Prove that 

1 sin(kwot)sin(gwo t)dt = 0 

T 

0 
for 

wo 2#' 

 
f = 

T 

k, g = integers 

Solution 

1 sin(kwot)sin(gwo t)dt 

T 

Let D = (22) 
0 

Since 
cos(a +/3) = cos(a)cos(i3)— sin(a)sin(fl) 

or 
sin(a)sin(/3)= cos(a)cos(3)— cos(a +13) 

Thus, 

1 c os(kwot) c os(gwo t)dt — f co4(k  g)wA lt 

T T 

D = + (23) 
0 0 

From Equation (1) 
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T 

Icoi(k  g)woddt = 0 + 

0 
then 

1 cos(kwot)cos(gwot)dt — 

T 

D = 0 (24) 

0 

Adding Equations (23), (26) 

i sin(kwot) sin(gwot) + i cos(kwot) cos(gwot)dt 

T T 

2D = 

 0 

1 coikwot — gwoddt (25) 

 

Icoi(k — g)woddt 
0 

2D = 0, since the right side of the above equation is zero (see Equation 1). Thus, 
T 

D = i sin(kwot)sin(gwot)dt = 0 (26) 

0 

Recommended Questions  

1. Find x(t) if the Fourier series coefficients are shown in fig. The phase spectrum is a null 

spectrum. 

I 

4  1  

 • •  

 a  a 
 

 
2. Determine the Fourier series of the signal x(t)=3 Cos(nt/2 + n/3). Plot the magnitude and 

phase spectra. 

3. Show that if x[n] is even and real. Its Fourier coefficients are real. Hence fins the DTFS of 

tii,i Efiln — 2p j 

the signal 

4. State the condition for the Fourier series to exist. Also prove the convergence condition. 

[Absolute integrability]. 

5. Prove the following properties of Fourier series. i) Convolution property ii) 

Parsevals relationship. 

6. Find the DTFS harmonic function of x(n) = A Cos (27m/No). Plot the magnitude and phase 

spectra. 

7. Determine the complex Fourier coefficients for the signal. 

X(t)= {t+1 for -1 < t< 0; 1-t for 0 < t < 1 which repeats periodically with T=2 units. Plot 

the amplitude and phase spectra of the signal. 

8. State and prove the following of Fourier transform. i) Time shifting property ii) 

Time differentiation property iii) Parseval's theorem. 
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UNIT 5: Fourier representation for signals — 2 Teaching hours: 6 

Fourier representation for signals — 2: Discrete and continuous Fourier transforms(derivations of 

transforms are excluded) and their properties. 

TEXT BOOK 

Simon Haykin and Barry Van Veen "Signals and Systems", John Wiley & Sons, 2001.Reprint 
2002 

REFERENCE BOOKS 

1. Alan V Oppenheim, Alan S, Willsky and A Hamid Nawab, "Signals and Systems" Pearson 

Education Asia / PHI, 2nd edition, 1997. Indian Reprint 2002 

2. H. P Hsu, R. Ranjan, "Signals and Systems", Scham's outlines, TMH, 2006 

3. B. P. Lathi, "Linear Systems and Signals", Oxford University Press, 2005 

4. Ganesh Rao and Satish Tunga, "Signals and Systems", Sanguine Technical Publishers, 2004 
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UNIT 5  
Fourier representation for signals — 2  

5.1 Introduction:  

Fourier Representation for four Signal Classes 

Fourier Representation Types 

Periodic Signals periodic Signals 
 

 
Continuous Time Discrete Time Discrete time Continuous Time 

  
FS DTFS * DTFT 

5.2 The Fourier transform 

5.2.1 From Discrete Fourier Series to Fourier Transform: 

Let x [n ] be a nonperiodic sequence of finite duration. That is, for some positive 

integer N, 

 y n  
i ]  0 n  

Such a sequence is shown in Fig. 6-1(a). Let x,Jn] be a periodic sequence formed by 
repeating x [n ] with fundamental period No as shown in Fig. 6-1(b). If we let 
No

 w
e 

 
have 

lirn Xvin] [ ]  
x n  

 

--• 

The discrete Fourier series of xNo[n] is given by 
 

r . j ckei"'  
 N irk <mcd. 
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1 

 xA, 0in] ek 
 e-iknn n 

N0 nr i  . <No) 

  
I I P 

I I 1 1 

 F 

 
 

• • S • 
 -N 0 N, 

zNo[ni 

4 o 0 1 I P 

I   I   I   
1 
1 i 

0 1 1 

 -• • 
   • a • •  •  • • • • 

-N, 0 N, No  

Fig. 6-1 (a) Nonperiodic finite sequence 4n]; (b) periodic sequence formed by periodic extension of 
xrn]. 

1 N i 
I 

 

C k - 
 xn]e 

[  
x [ n ] e  " o n  

 
o n N 0 n -NI  

X(f1)  = 
 

 
[ n] 
x  e 

- 'fin 

fro = - 

the Fourier coefficients ck can be expressed as 

1 
- X(kflo) 

No 
 

X(klit,)elkikun 
 No k = < N> 

r 1 

1 
X(kflo)  e-"0"111, 

 
27r k = N„) 

Properties of the Fourier transform 

Periodicity 
As a consequence of Eq. (6.41), in the discrete-time case we have to consider values of R(radians) 

only over the range() < f2 < 27( or it < f2 < 7C, while in the continuous-time case we 

have to consider values of 0 (radians/second) over the entire range -00 < w < 00. 

X(i2 + 27r) = X( i2 ) 
 

Linearity:  

apc ,[ n j+a,x2 4—,a1X1(1
-1) -1-a2X2(n) [n] 
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Time Shifting:  

 X [
n 

— no  
  1 1  )  

Frequency Shifting:  

  — no) 

Conjugation:  

x xinj  ..(--,X*( —  

Time Reversal:  

( - i ( - n )   

Time Scaling:  

 

 
x(at)  

Duality:  

The duality property of a continuous-time Fourier transform is expressed as 

X(/)
,
•—:27i-x( —to) 

There is no discrete-time counterpart of this property. However, there is a duality between 

the discrete-time Fourier transform and the continuous-time Fourier series. Let 

 . V  i  !  2  )  t n 1 

  
=  -  

X ( 1 1 +  2 7 r )  =  X ( S i )  

Since 11 is a continuous variable, letting CI = t and n —k 
 

"t(t)  

Since X(t) is periodic with period To = 2 it and the fundamental frequency coo = 27r/To = 1 
, Equation indicates that the Fourier series coefficients of X( t) will be x [ - k ] . This 
duality relationship is denoted by 

X(I) a  ck = 

where FS denotes the Fourier series and c, are its Fourier coefficients. 
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Differentiation in Frequency: 

 [ n I —>  j 
dX(.U) 

dS 

Differencing: 

 i  %.   (1 = e - ' ' ' ) X ( 0 )  

The sequence x[n] -x[n — 1] is called the first difference sequence. Equation is easily obtained 

from the linearity property and the time-shifting property 

Accumulation:  

 

4  X ( 0 ) 5 ( 0 )  ±  
1 

k - - 

Note that accumulation is the discrete-time counterpart of integration. The impulse term on the 

right-hand side of Eq. (6.57) reflects the dc or average value that can result from the 

accumulation. 

X [ k  ]  

1 e  - ~- 
 

Convolution:  

X i I  
 

As in the case of the z-transform, this convolution property plays an important role in the 

study of discrete-time LTI systems. 

Multiplication:  

 lx2 inj [n] 
2 7 r  x ,(n)  0  x2 (n)   

where @ denotes the periodic convolution defined by 

 
= 

1 X1(0 iX.2“/ — 0) dO 

The multiplication property (6.59) is the dual property of Eq. (6.58). 

Parseval's Relations: 

 
1 

xi [n] [ri] 
xi 

 

-1ri2TrX1(11)X2(  .1.1) till 
  2.71. 

 

 lxn 
[]12 
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 criv   X(160, Yaw) 

Liiit a]  ux(E) + bjf  caCro) t b Mu) 

Time ShUMg-  x(t — En
.
) u

-
i'üx(ioo) 

Frequency Shifting  ei '"" 'x(t)   

   

  

 

Co nv citation  x(t)  

Multi lication  rtE)Y(t) X(1rA) 

   

  1 

d i c 0 ( 0 )  +  RX(0)6(ap)  
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Summary  
Prt x(I), 

Conjugation s (0 

X (— jap) 

1 Time and Fri:A tic Inc 

Time Reversal x ( — 0 

 

a 

y(t) X(fw)Y (iw) 

 

i — 

d 

 

Recommended Questions  

1. Obtain the Fourier transform of the signal e 
-at 

u(t) and plot spectrum. 

2. Determine the DTFT of unit step sequence x(n) = u(n) its magnitude and phase. 

3. The system produces the output of yet) = e
t
 u(t), for an input of x(t) = e-2t.u(t). Determine 

impulse response and frequency response of the system. 
4. The input and the output of a causal LTI system are related by differential equation 

d 2y (t) 6dy (CI 
8y(t)= 2x(t) 

dt2  
i) Find the impulse response of this system 

ii) What is the response of this system if x(t) = te
at
 u(t)? 

5. Discuss the effects of a time shift and a frequency shift on the Fourier representation. 

6. Use the equation describing the DTFT representation to determine the time-domain 

signals corresponding to the following DTFTs 
i) X(en= Cos(12)+j Sin(12) 

X(ej
a
)={1, for ir/2<fl< it; 0 otherwise ii) and X(ej

a
)=-4 12 

7. Use the defining equation for the FT to evaluate the frequency-domain representations 
for the following signals: 

i) X(t)= e
3t
u(t-1) 

ii) X(t)=e 
t
 Sketch the magnitude and phase spectra. 

8. Show that the real and odd continuous time non periodic signal has purely imaginary Fourier 

transform. (4 Marks) 

. Page 72 

I.Nfterentiatim a /4
...oXiijco) 

[integration 

Fie( Liency 

Difit n ium 
iii 

E 



 

 

 

Signals & Systems 10EC44 

UNIT 6: Applications of Fourier representations Teaching hours: 7 

Applications of Fourier representations: Introduction, Frequency response of LTI systems, Fourier 

transform representation of periodic signals, Fourier transform representation of discrete time 

signals. 

TEXT BOOK 

Simon Haykin and Barry Van Veen "Signals and Systems", John Wiley & Sons, 2001.Reprint 

2002 

REFERENCE BOOKS 

1. Alan V Oppenheim, Alan S, Willsky and A Hamid Nawab, "Signals and Systems" Pearson 
Education Asia / PHI, 2nd edition, 1997. Indian Reprint 2002 

2. H. P Hsu, R. Ranjan, "Signals and Systems", Scham's outlines, TMH, 2006 
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4. Ganesh Rao and Satish Tunga, "Signals and Systems", Sanguine Technical Publishers, 2004 
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UNIT 6 

Applications of Fourier representations  

6.1 Introduction:  

Fourier Series and LTI System 

• Fourier series representation can be used to construct any periodic signals in  

discrete as well as continuous-time signals of practical importance. 

We have also seen the response of an LTI system to a linear combination of 

complex exponentials taking a simple form. 

Now, let us see how Fourier representation is used to analyze the response of 

LTI System. 

Consider the CTFS synthesis equation for x(t) given by 

Suppose we apply this signal as an input to an LTI System with impulse respose h(t). 

Then, since each of the complex exponentials in the expression is an eigen function of 

the system. Then, with s k =jkwo ' follows that the output is 
+.0 

y(t) RI H(eiknejkwot 1 
 

Thus y(t) is periodic with frequency as x(t). Further, if ak is the set of Fourier series 

coefficients for the input x(t), then { (e'I ii s the set of coefficient for the 

y(t). Hence in LTI, modify each of the Fourier coefficient of the input by multiplying by 

the frequency response at the corresponding frequency 

Example: 
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Consider a periodic signal x(t), with fundamental frequency 2n, that is expressed in 

the form 
+3 

X(t) = 1 
k=-3 

akeik' 

 
... .. (1) 

where, ao.i. ai=a-i= 1/4 , a2=a-2=1/2, a3=a-3=1/3, 

Suppose that the this periodic signal is input to an LTI system with impulse response 

To calculate the FS Coeff. Of ofp y(t), lets compute the frequency response.The 

impulse response is therefore, 

H  )  e-1̀ Yrthr = 
1 

e — 
- jairr 
e  

— 
 1 + ico  

and 
1 

H((.0) 
1 + /et) 

Y(t) at coo 27c . We obtain, 
+3 

Y ( t )   
 
bkeR2' 

 with bk akfl Ok27-0, so that 

 
1 

b2 
1 1 

b3 
1 1 

_  j 2  m 2 +  j 4 m -  3  j60  ± 

b_i 
1 

b-2 

1 1  
b3 

1 1 

)  j2 7r) 
  

2 U 140  3  j6TE — — 

b. 1 

The above o/p coefficients. Could be substituted in 
+3 

y(t) = 1 
bkefic2Trt 

k= -3  
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Finding the Frequency Response  

We can begin to take advantage of this way of finding the output for any input once 

we have Fl(co). 

To find the frequency response H(o) for a system, we can: 

1. Put the input x(t) = e 'er` into the system definition 

2. Put in the corresponding output y(t) = El(c.o) 
n 

3. Solve for the frequency response H(a)). (The terms depending on t will 

cancel.) 

Example: 

Consider a system with impulse response 

h(t) 
for t e [0,5] 

otherwise 

_ 

0 

Find the output correspondingto the input x(t) cos(1O t). 

y(t) = I h(r) x(t — -E) cl-r = j —5 
 
cos(i 00 -0) dt — 

-E.
 ,x

) 

 

 
( 

1 sin(10(t 
 

5 
1 

y(t) 
 1 0  =  —50  i(s in(10t) sin(10(t 5))01 

 

Differential and Difference Equation Descriptions  

Frequency Response is the system's steady state response to a sinusoid. In contrast to 

differential and difference-equation descriptions for a system, the frequency response 

description cannot represent initial conditions, it can only describe a system in a 

steady state condition. The differential-equation representation for a continuous-time 

system is 

 
N 

ak—dtky(t) 

d k dk 

x (0 bk 
 dtk 

k=0 

d PT 

since, —citg(it)  < j co G (j ())) 

Rearranging the equation we get 
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 2 _0 bk (itOk 
 = 

ENk—O UCOk  ak 

The frequency of the response is 

( N )  

  bk Uw)k = 

 
X (j(0) 

  
EZ= 0 ak (jco)

k
 

Hence, the equation implies the frequency response of a system described by a linear 

constant-coefficient differential equation is a ratio of polynomials in j 

The difference equation representation for a discrete-time system is of the form. 
N M 

 
aky[n —  = bkx[n — k] 

 
k 0 k o 

Take the DTFT of both sides of this equation, using the time-shift property. 

 k] 
DTFT 

- ~ G e J ~  — 

To obtain 
N N 

ak  (
e -  

ic k  X
(

e j w
)  

 
0 

 
o k k 

Rewrite this equation as the ratio 

Y(ejw)  2 1 _ 0  b k  ( e
i
l

k  

X ( e j w )  
— 

EZ=o  ak (ejw)k 

The frequency response is the polynomial in 
ei6j 

Y(eJw)  
k 

11(e-1 6)) 
EtLo  bk (e jw )  

 = 
  

Ek=o ak (e jw)k  

Differential Equation Descriptions 

Ex: Solve the following differential Eqn using FT. 

dt2y(t) + 4 
d2 

d d 
)c(t)+x(t) 

cy(t) + 5y(t) 31t 

For all t where, x(t) Soln 

:we have 

(1 + e—t)u(t) 

—cit2At) + 4 —dtAt) + 5y(t) 

d2 
d 

3 
d 

x ( t )  +x(t) 
cit 

FT gives, 

[Ci  + 400  +  5 ]  Y CIO (3jo + 1)X(l6)) 
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and x(t) (1 + e-t)u(t) x(t) u(t) + (e - t)u(t) 

X(1(6) 
 

+ ITS (a))) + 
1 

FT 
7r(5(6._)) + 

1 
uw ___ + since 

u(t) 

  
j )  

Fr 1 
and(e-t)u(t)   jw + 1 

) 
1 

Ala)) 
j 

+ ve5(w)+ 

Hence we have 
(160 + 1) 

And Rfo))2 + 4(*) + 5] Kiri)) (3joi + 1)X(jco) 

1.e 
(3jo) + 1) 

  = [00
2
 + 406)) + 5] X (j6)) 

Y 0 co) 
(3j to + 1 1 

—1) ] =  „RA-) + 
2
)
2 +1] 

+ 716(6.0 + 
ita) (jti) + 

Y )  
(3jW + 1) 

 
TTS(C0)) 

1 
 = 

Rico)2 + 40,( 0) + 5] 
+ ± 

+0  

r(joi) Y(1) + Y(2) + Y(3) 

Y(1 6)) =  [U(z) 

(3 jco + 1) 

2)2 + lliCd 

+ 
TE 

 
(3j w+ 1) 

5 [(fa) + 2)
2
 + 1](ja) + 1) 

(3jca + 1) (3/(0,) = 0) + 1)45 (0) = 1] 
Y Uta ) = 

+ 

0) + 2)2 + 'Kw 0) [Uct) + 2)2 + *co 

(3j4) + 1) 
   

+ 

Kied + 2)2 + li(ja) + 1) 

11(1) 
(3iw + 1) 

Y(1) = 
A 

+ 
B j w  +  C  

= 
 Rico + 2)2 + 11/to  [[Ow + 2)2 + 1] 

A = — 
1 

, B 

 

 

11 

Performing partial fraction we get  5 5 
1/5 1/5jw + 11/5 — 

Y(1) = 
 + 

[(jw + 2)
2
 + 1] ja) 

S i m i l a r l y  

Y(3) 
(3jco + 1) 

[(jo) + 2)
2
 + 1](ico + 1) 

Y(3) 
R Pjco  +  Q  

(ja) + 1) 
 

[0-co + 2) 2 + 1] 

Performing partial fraction we get R  —1 ,P 1, Q 6 
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—1 
Y(3) + 

 
=  

[(joi + 2)
2
 + 1] (jco + 1) 

—1 ja) ± 6 
Y(3) + = 

 
[Ow + 2)

2
 + 1] YUc.o) Y(1) + Y(2) + Y(3) Ow+1) 

Hence, we have 

Y(I) 
 

+ 
115 jai + 11/5 

— 
 

[Ow + 2)
2
 + 1] /co 

Y(2)  

Readjusting 
1/5 

1/5jw+ 11/5 Tr 1 jto+6 
M  )  =  j 

+ 
[(f + 2)

2
 + 1] 

+ - 

5
 6 (w) + 

+ 1) 
+ 

[(1 w + 2)
2
 + 1] 

Y ( I a))  + 
 

[[ = 
jai U(4) + 1)  

1 1 4j co + 41 

11-1 

Y(/(o ) 

 
n
-
 1 1 /5 1/5 jai jw + 6 1 

= 
Pz-

) 
+ 

 [(ja) + 2)
2
 + 1] 

+ 

[(f + 2)
2
 + 1] (jco + 1) 

we know that, 

e
-
P

t
 Cos oh, WO E 

Fr +fto 
}  

[(p + /w)2 + (009 

Fr 
e-Pt sin co. tu(t) 

(00 
E  *  

[(i
3
 + /0

2
 + 

(0
0

2
] 

Readjusting the last term, we get 

 =  
1 - 

 
+ 

 

1 
+ 

4 

[ —ftico 

jc.o-1-2 
+ 

33 

L[(jco + 2)
2
 + 

1 
i]l 5 (jco + I- 5 2)

2
 + 1] 

Now, taking the inverse Fourier Transform, we get  

y (t) = 
—5 140 — e - t

u(t)  + e 
-2t 

cos t u(t) + ei 
-2t 

sin t u(t) 
   

5 5 

Differential Equation Descriptions  

Ex: Find the frequency response and impulse response of the system described 
by the differential equation. 

 d d 

dt2y(t) + 3 Tity(t) + 2y(t) 2 x(t) + x(t) 
dt 
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Here we have N=2, M=1. Substituting the coefficients of this differential equation in 

Huw) 

 

E  = 

 
X0

.
60) 

  
Ek .  0 ak(r,o)k 

Differential Equation Descriptions  

We obtain 

Wico) 2j6) + 1 

U(0)
2
 + 3 .itt) + 2 

The impulse response is given by the inverse FT of H(jco). Rewrite HO 

co) using the partial fraction expansion. 

1-1U(0)  = 
jco + 1 

+ 

jto -I- 2 

Solving for A and B we get, A=-1 and B=3. Hence 

1/(joi) 
—1 3 + 

_ R d  +  1  j t o  +  2  

The inverse FT gives the impulse response 

 — e 3e
-2t 

u(t)  
-tu(t) 

Difference Equation 

Ex: Consider an LTI system characterized by the following second order 

erence equation. linear constant coefficient 

y[n] 1.3433An — 1] — 0.9025y[n — 2] + x[n] 
— 1.41424n — 1] + x[n - 2] 

Find the frequency response of the system. 

Soin: 

y[n] 1.3433y[n - 1] - 0.9025y[n - 2] + x[n] 

- 1.4142x[n - 1] + x[n - 2] 

Y ( e j l   
 ( e j l  

— 0.902   
 ) 

1.4142 
 

w 
(e—j)X(C  + (e- 

 )X(e  
) ) 

we know,yin  
DTFT 

 e-jkw Y(ei') —  ‹ 
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 = 
X(e-w) 

1  +  e - } 2 G ` '  
=  1.3433e

—
Pi' + 0.9025e

—
i
2
ü

)
 1 — 

Ex: If the unit impulse response of an LTI System is h(n)=anu[n], find the response of 

x[n]= ,8 nu if,1n1-] where p, a < 1 and a # 13 the system to an input defined by 
Solo: 

Y[n] = h[n] * x[n] 
Taking DTFT on both sides of the equation, we get  

1/(ei') 11 (e i ' )X (e1 ' )  
Y(e i l  

1 x 1 
ae-iw 13e-i°) = 1 1 

Y(ejw) 
1 

x 
1 

= x 
1 — fie -lc-)  ae-/U' 13e-iw cte-i6J 1 — 1 — 1 — 

where A and B are constants to he found by using partial fractions  

Then, Y (e -j' ) = x 
Let, e -iw  = v 1 - av 1 —  

A 
a 

B= 
—f3 

= 
B y  p e r f o r m i n g  p a r t i a l  f r a c t i o n s ,  w e  g e t  a — a — p 

a —/3 
a a 

There f ore ,Y(e jw) 
—  

x 
— f3 

1 - a e c') 1 - /;e-~'' 

Taking inverse DTFT, we get  

y[n] — 
 

u [n] 
a a 

a 
uni 

fl ig 

Sampling 
In this chapter let us understand the meaning of sampling and which are the different 

methods of sampling. There are the two types. Sampling Continuous-time signals and 

Sub-sampling. In this again we have Sampling Discrete-time signals. 

Sampling Continuous-time signals 

Sampling of continuous-time signals is performed to process the signal using digital 

processors. The sampling operation generates a discrete-time signal from a continuous-

time signal.DTFT is used to analyze the effects of uniformly sampling a signal.Let us 

see, how a DTFT of a sampled signal is related to FT of the continuous- 

 

time signal. 

• Sampling: Spatial Domain: A continuous signal x(t) is measured at fixed 

instances spaced apart by an interval 
C
T'. The data points so obtained form a 

discrete signal x[n]=x[nT]. Here, AT is the sampling period and 1/ AT is the 

sampling frequency.Hence, sampling is the multiplication of the signal with an 

impulse signal. 
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Sampling theory 

 

11 

 1 
1 

 

 

 
 

 

 

Rjco) 

Reconstruction theory 

    

 
   

* x 

  

— 

 

 

2  

x(t) FON) 
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Samplinu: Spatial Domain  

From the Figure we can see 
 

Where x[n] is equal to the 
samples of x(t) at integer 
multiples of a sampling 
interval T 

xs(t) 1 x (n) o(t — nr) 

= 

 Now substitute x(nT) for x[n]to obtain . 

xs(t) 1 x(rre) 8(t — n-c) 
 

since x(t)5(t — nr) x(nr)5(t nr) 

we may rewrite xs(t) as a product of time functions 

xs(t) x ( t )p ( t )  where, p(t)  — nr) 

Hence, Sampling is the multiplication of the signal with an impulse train. 

Xs (t) 
The effect of sampling is determined by relating the FT of to the FT 

X ( t )  
of Since Multiplication in the time domain corresponds to 

convolution in the frequency domain, we have 

1  
Xs(] &.)) 

2ff, 

X(j
W)  
P(jt
o) 
* Substituting the value of P(i 6a) as the FT of the pulse train i.e 

 

p(t) = 
 

(5(t - nT) 

 

We get, 
+02. 

P ( j w )  = 
 

T  
 kws) — 

41=— co 

where, cos 

 

, is the sampling frequency. Now 
T 

+00 

XsUco) 
1 

X (w )  * 
 

 
 kws) 

-ff 
 

 
 

  

  
I  

 k  ) ) 

 

1 

The FT of the sampled signal is given by an infinite sum of shifted version of 

the original signals FT and the offsets are integer multiples of cos_ 
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Aliasing : an example 

Frequency of original signal is 0.5 oscillations per time unit). Sampling 

frequency is also 0.5 oscillations per time unit). Original signal cannot be 

recovered. 

Aliasing Ex: 1 

Sampling 
• points x[n] 

 

  
  

 
 

A t 

i  
• 

 
1 1 

 

  
  - 

Original signal   

Sampling frequency  x(t) 

ws =115cyclesiunit 

time 

 S  • 

 
• . 

 
4. 6  - - g  

 

Aliased signal 
which is 
reconstructed 

Aliasing Ex:2 

 

Sampling 
points x[n] 

0 1 T h  

 

j V 
  - t 

 

 Original signal 

Sampling frequency x(t) 

ws =0 7cyclestunit 
time 

 

   A 
 

  
 Aliased signal appear like a sirie.wave but of 

lower frequency, original signal is lost 

Non-Aliasing: Ex 3 

 Sampling 

      
points x[n] 

V 1J r nV j 
   

- . Origina l signal 

Sampling frequency 
u..rs =1.0 cycles/unit 
time i.e twice the 
frequency of the 

x(t) 

input 

  Y A  r — 

  
Non-Aliased signal appear like a sine wave but of 
lower frequency, original signal is lost 
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Sampling below the Nyquist rate 

H 

  

(I) 

  

X  

 
 

  

 

   

A(jar)) 

Reconstruction below the Nyquist rate  

_        

 
   

* 

 

  
 

 
 , -  
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FT of sampled signal for different sampling frequency 

x(jr,o) 

(a) Spectrum of continuous-time signal 

  
-vv o W 

x.s(jw) (b) Spectrum of sampled signal, w, =3)A? 

K=- 2 
 

 

4m 

 

l r -A1 

 
////  

i 
  -w„ -W  W  2w- 

(c) Spectrum of sampled signal, ws =3/2W 
xs(jr.0) 

K= - 2 K=- 1 K=1 K=2 

  
-4w, -3w= -2w, 0 W fft. (,.,)= 4w= 

Reconstruction problem is addressed as follows. 

Aliasing is prevented by choosing the sampling interval T so that 

cos>2W, where W is the highest frequency component in the signal. This 

implies we must satisfy T<irIW. 

Also, DTFT of the sampled signal is obtained from sOco using the 

relationship D.= coT, that is 

x[n] 
DTFT 

 Xa(ico)  tu    = 

This scaling of the independent variable implies that co=cos corresponds to 

 

Subsampling: Sampling discrete-time signal 
FT is also used in discrete sampling signal. 

Let )'I = xrcull be a subsampled version x[n], where q is a positive integer. 

Relating DTFT of y[n] to the DTFT of x[n], by using FT to represent x[n] as a  

sampled versioned of a continuous time signal x(t). 

Expressing now y[n] as a sampled version of the sampled version of the same 

underlying CT x(t) obtained using a sampling interval q that associated with 

x[n] 

We know to represent the sampling version of x[n] as the impulse sampled CT 

signal with sampling interval T. 

E-co 

xs( t )  
 

x (n) +5(t n t )  

 

Suppose, x[n] are the samples of a CT signal x(t), obtained at integer multiples  
 

of T. That is, x[n]=x[riT]. Let x(t) "" A U W) and applying it to obtain 

 
X ( j ( w  — kw s)) 

T  
 

+co 

X6(I60) 
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Since y[n] is formed using every qth sample of x[n], we may also express y[l]  

as a sampled version of x(t).we have Yfrd 
xrcini 

x(nqT) 

Hence, active sampling rate for An] is T'=qT. Hence 

 FT  
ya(t) x(t) 8(t —   Y6(j w) =  

1 
X((co — icco2)) 1 

n=—.  

Hence substituting r=q T, and cl)s'= cos/q 
+co 

1 
N i C 0 )  =  X 0. (Cti Ws)) 

 k=- co 
 

Ys(i co) and Mitt)) 
We have expressed both as a function of 

Expressing X(
1
° as a function of 

5(
i
t
c

1)
 . Let us write k/q as a proper function, 

we get 
 m 

1+ 
q 

k 

where I is the integer portion of —, and m is the remainder 
q 

allowing k to range from — oo to + co corresponds 

to  having I  r an ge  f rom — as to + co and m from 0 to q — 1 

q +00 

 

711 

 

Y 6(j (0) 
1  T  1  

XS 
_  _ 

q m=0 1=-00 

1 

q — I 

 
 

M 

 X 8 
co5)) 

q 
7n =0 

which  represents  a .  sum o  f  shi f ted  vers ions  of  

Ufa)) normalized by q.  

Converting from the FT representation back to DTFT 

and substituting S1 = cof above 

and also X(ein) X5(j f2/T) , we write this result as  

 

Yo (e  ) 

l 
q 
 

c i e  

7-n=0 

where, Xq(e j-r1 X(einiq) — a scaled DTFT version ) 
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Recommended Questions  

1. Find the frequency response of the RLC circuit shown in the figure. Also find the impulse 

response of the circuit 

*WV  
fi — g 

  C. dit) 
. 

   

    

FIE.Q64 h) 

2. 
The input and output of causal LTI system are described by the differential equation. 

d'y (t) + 3 dY  + 2 y (t) - x (t) 
dt2 dt 

i) Find the frequency response of the system 

ii) Find impulse response of the system 

iii) What is the response of the system if x (t) =  te u (t). 
-̀ (10 Marks) 

3. If x(04-0C(f). Show that x(t)Coswot4-+1/2[X(f-fo)+X(f-fo)] where w0=27(fo 

4. 

The input x (t) = e
-3t

 u(t) when applied to a system, results in an output y (t) the 

frequency response and impulse response of the system. 

et u(t). Find 

(07 Marks) 

5. 

Find the DTFS co-efficients of the signal shown in figure Q4 (b), 

 
 

-1 , 

• 
-s1 

L i i1 L 
J 

 
  

r   
. 

 Fs .1 4 a Is -12 

6. State sampling theorem. Explain sampling of continuous time signals with relevant 

expressions and figures. 

7. Find the Nyquist rate for each of the following signals: 

x (t) = sinc(200t) ii) x (t) =since (500t) i) 
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UNIT 7: Z-Transforms —1 Teaching hours: 7 

Z-Transforms — 1: Introduction, Z 

inversion of Z — transforms. 
— transform, properties of ROC, properties of Z — transforms, 

TEXT BOOK 

Simon Haykin and Barry Van Veen "Signals and Systems", John Wiley & Sons, 2001.Reprint 

2002 

REFERENCE BOOKS 

1. Alan V Oppenheim, Alan S, Willsky and A Hamid Nawab, "Signals and Systems" Pearson 
Education Asia / PHI, 2nd edition, 1997. Indian Reprint 2002 

2. H. P Hsu, R. Ranjan, "Signals and Systems", Scham's outlines, TMH, 2006 

3. B. P. Lathi, "Linear Systems and Signals", Oxford University Press, 2005 

4. Ganesh Rao and Satish Tunga, "Signals and Systems", Sanguine Technical Publishers, 2004 
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UNIT 7 

Z-Transforms — 1 

7.1 Introduction to z-transform: 

The z-transform is a transform for sequences. Just like the Laplace transform takes a function 

of t and replaces it with another function of an auxiliary variable s. The z-transform takes a sequence 

and replaces it with a function of an auxiliary variable, z. The reason for doing this is that it makes 

difference equations easier to solve, again, this is very like what happens with the Laplace transform, 

where taking the Laplace transform makes it easier to solve differential equations. A difference 

equation is an equation which tells you what the k+2th term in a sequence is in terms of the k+1 th 

and kth terms, for example. Difference equations arise in numerical treatments of differential 

equations, in discrete time sampling and when studying systems that are intrinsically discrete, such as 

population models in ecology and epidemiology and mathematical modelling of mylinated nerves. 

Generalizes the complex sinusoidal representations of DTFT to more 

generalized representation using complex exponential signals 

Irri {  Z } 

rei" 

r 

Re{  z } 
0 

z-plane 

 It is the discrete time counterpart of Laplace transform 

The z-Plane 

 Complex number z = ref q s represented as a location in a complex plane (z plane) 

7.2 The z-transform: 

 Let z = re j be a complex number with magnitude and angle 

 The signal x[n] = zn is a complex exponential and x[n] = rn cos( 
 The real part of x[n] is exponentially damped cosine 

 The imaginary part of x[n] is exponentially damped sine 
 Apply x[n] to an LTI system with impulse response h[n], Then 

n)+ jrn sin( n) 

y[n]  = H fx[n] }  = h[n] * x[n] 
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Re 1 z  " 1 

 1 I 1 ~2 — 

 

- 

 
 0 

O O  
 

 
 

-11 

tun{ z " } 
 

- - -  I  I  

I 

1-T  2-1 
j 

  
-̀" 

- 
" 

— 

 &

 ___ 
A .5 

   
 

i 
6 

An] I  h [ k ] , 4 n  k] 
k — ~  

 If 

x[n] zn 

we get 

.3[12] h[k] z r 1 -k 
k =  

y[n] zn E  h [k]z -k 
 

 The z-transform is defined as 

H(z) h[k]Z k 

 

we may write as 

H(z") 11(z)z" 

You can see that when you do the z-transform it sums up all the sequence, and so the individual 

terms affect the dependence on z, but the resulting function is just a function of z, it has no k in it. It 

will become clearer later why we might do this. 

 This has the form of an eigen relation, where zn is the eigen function and H(z) is the eigen value. 

 The action of an LTI system is equivalent to multiplication of the input by the complex number 
11(z). 
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 If 1I(z) 111(z)lei0z) then the system output is 

H(z)le-'  (z ) An] 

 Using z re-g2 we get 

4n] 1 H(rejc2)1rn cos(Q n + 1)(re-112)+ 

Ar6112))11 rnssiinn((S02nn ++ ((11))((rreeiicc22 

 Rewriting x[n] 

x[n] z" r" cos (S2 n) + jr" sin(c2n; 

 If we compare x[n] and y[n], we see that the system modifies 

— the amplitude of the input by 1 H(re-42) 1 and 

shifts the phase by 4o(reji-2) — 

DTFT and the z-transform 

 Put the value of z in the transform then we get 

 E h[n](rejc2)' 
 

I (h[n] r n)e---g211 
 

 We see that H(reir2) corresponds to DTFT of h[n]r 

 The inverse DTFT of H(reP) must be h[n]r—n 

 We can write 

2rc , c 
h[n] r—n 

1 

 
II( re-112) e-g)

'
1

 ̀c/S2 

The z-transform contd.. 

 Multiplying h[n]r—n with r' gives 

h[n] 
 2m 

h[n] 
1 

 
H(refi-2)(refi2)"cic2 

 c 


 We can convert this equation into an integral over z by putting ref° z 

 Integration is over SI, we may consider r as a constant 
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 We have 

dz = =  jzdc2 

 
-1 

= -z dz 

1 

 uonsider limits on integral 

— S2 varies from —rc to it 

 z traverses a circle of radius r in a counterclockwise direction 

 We can write h[n] as h[n] = 2Rj H(z)zn-1 dz  

where f is integration around the circle of radius 14 r in a counter 

clockwise direction 

 The z-transform of any signal x[n] is 

X( Z)  
— 

 The inverse z-transform of is 

1 
X ( z )

- 1
 d z  x[n] 

27Ej ,  

 Inverse z-transform expresses x[n] as a weighted superposition of corn 

plex exponentials 

 The weights are (+0)X(z)z—lidz 

 This requires the knowledge of complex variable theory 
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Convergence 

 Existence of z-transform: exists only if __,A[n]z-n converges 

 Necessary condition: absolute summability of x[n] z-n , since lx[n]z-n 

~x[n]r nl, the condition is 

I < ' 
 

 The range r for which the condition is satisfied is called the range of 

convergence (ROC) of the z-transform 

 ROC is very important in analyzing the system stability and behavior 

 We may get identical z-transform for two different signals and only ROC 

differentiates the two signals 

 The z-transform exists for signals that do not have DTFT. 

 existence of DTFT: absolute summability of x[n] 

 by limiting restricted values for r we can ensure that x[n]r-n is abso-

lutely summable even though x[n] is not 

 Consider an example: the DTFT of x[n] an u[n] does not exists for 

110(1 > 1 

 If r > a, then r-n decays faster than x[n] grows 

 Signal x[n]r-n is  absolutely summable and z-transform exists 

xLit] 

0 a"icin I 

4 9 
c a> I 

 

 

4 

 
V't 9 c, 

M i n e  7  ?  9  •  
0 4 z  

x[n]r -" 

>. a 
t  Y T i i 1 9 a  

i i -•- 
, 
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11,1171 

 
 

eA2 

Reizl 

  

] 

z-plane 
1 

Figure 1.31: DTFT and z-transform 

The z-Plane and DTFT 

 If x[n] is absolutely summable, then DTFT is obtained from the z- 

transform by setting r 1 (z e-i), ie. X(eP) X(z)1,,,12 as shown 

in Figure ?? 

Poles and Zeros 

 Commonly encountered form of the z-transform is the ratio of two 

polynomials in z-1 

bo + biz 1 + + bmz-M 
X(z) 

ao+a1z -+ ... + bNz-N 

 It is useful to rewrite X(z) as product of terms involving roots of the 

numerator and denominator polynomials 

41k1/=1 (1 clz 
-1) 

X(z) 
f ln (1  dicz-1) 

where b bo/ ao 

Poles and Zeros contd.. 

 Zeros: The ck are the roots of numerator polynomials 

 Poles: The dk are the roots of denominator polynomials 

 Locations of zeros and poles are denoted by "0 - and x respectively 
 

Example 1: 
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 The z-transform and DTFT of x[n] {1,2,-1, 1} starting at n 1 

 X(z) r,°_,,,,,,v[n]z-n 1 ix[n]z-n z+2 z -1+ z -z 
, 

X(eP) X(z)1,,,f2 ej° + 2 e ± e
-  i2Q - 

 The z-transform and DTFT of x[n] {1,2,-1,1} starting at n 1 

X(z)  1 _ ix[n]z - n  z+2 z-1 ± Z-2 
 

 X(eP) X(Z)12-02 e-A2 +2 - e--)12 + e-J212 

Example 2 

 Find the z-transform of x[n] ocnu[n], Depict the ROC and the poles 

and zeros 

 Solution: X(z) 1 7 ,  o t f i u [ n ] z - f i  E71_0(1)n 

The series converges if Izi > lal 

X(z) 1—acre 
1 za.' IZI > lal.  

Hence pole at z oc and a zero at z 0 

 The ROC is 

Imtz 
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Properties of Region of Convergence:  

 ROC is related to characteristics of x[n] 

  ROC can be identified from X(z) and limited knowledge of  x[n] 

 The relationship between ROC and characteristics of the x[n] is used to find 

inverse z-transform 

Property 1 

ROC can not contain any poles 

 ROC is the set of all z for which z-transform converges 

 X(z) must be finite for all z 

 If p is a pole, then 1 11( MI  and z-transform does not converge at 

the pole 

 Pole can not lie in the RO( 

Property 2 

The ROC for a finite duration signal includes entire z-plane except z 0 

or/and z  

 Let x[n] be nonzero on the interval ni < n < 112. The z-transform is 

112 
X(z) y  x [n ]  z  

1x111 

The ROC for a finite duration signal includes entire z -plane except z 0 

or/and z  
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 If a signal is causal (n2 > 0) then X(z) will have a term containing z-1, 

hence ROC can not include z = 0 

 If a signal is non-causal (n1 < 0) then X(z) will have a term containing 

powers of z, hence ROC can not include z  

The ROC for a finite duration signal includes entire z-plane except z U 

or/and z = . 

 If n2 < 0 then the ROC will include z 0 

 If ni > 0 then the ROC will include z  

 This shows the only signal whose ROC is entire z-plane is x[n] oS[n], 

where c is a constant 

Finite duration signals 

 The condition for convergence is IX(z)1 < . 

IX(z) I 1 1 x[n]z 1 
 

 1 ix[n]z  1 
r r  -~  

magnitude of sum of complex numbers < sum of individual magni- 

tudes 

fr Magnitude of the product is equal to product of the magnitudes 

I lAinlz-111 y 1 n 
 rr—~ 

 split the sum into negative and positive time parts 

 Let 

(z) /, I x[n] I zl " 
—1 

n=—~ 

± (z ) E I x[n] I zl 
17=o 
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 Note that X(z) /_(z) +/+(z). If both /_(z) and 1+(z) are finite, then 

V( z) if finite 

 If x[n] is bounded for smallest +ve constants A A+, 1 _ and r+ such 

that 

Ix[n]1 cA—(r—)n , n < ° 

lx[n] 1 < A+ (r+)' n> ° 

 The signal that satisfies above two bounds grows no faster than (r+)fi 

for + ve n and (r) n for ve r 

 If the n < 0 bound is satisfied then 

—1 
I_ (z )  <  A_ I  ( r _ ) n i z r "  

 

A_ ( ) 
 

i —~ 1z1 k=1 

 Sum converges if Izi < i 

 If the n> 0 bound is satisfied then 

4(z) A+ I (r+)nlzr 
n 

7=0 

A+ I (—rIZ+I 
)n 

n=0 

 Sum converges if IA > r+ 

 If r+ <1z1 < r_, then both I+ (z) and /_ (z) converge and X(z) converges 

Properties of Z — transform:  
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— Linearity 

— Time reversal 

— Time shift 

— Multiplication by ce 

— Convolution 

— Differentiation in the z-domain 

The z-transform 

 The z-transform of any signal x[n] is 
 

X(z) x[n]z 
—n I 

 

  The inverse z-transform of X(z) is 

1 
) X(z)zn— 1 dz K[n] anj, 

 We assume that 

x[n] 
Z 

X(z), with ROC Rx 

y[n] 
2 

Y(z), with ROC Ry 

 General form of the ROC is a ring in the z-plane, so the effect of an 

operation on the ROC is described by the a change in the radii of ROC 

Pl: Linearity 

 The z-transform of a sum of signals is the sum of individual z-transforms 

min] + byjn]  ____Z > aX(z) + 

bY (z), 

with ROC at least Rxil Ry 

 The ROC is the intersection of the individual ROCs, since the z-transform 

of the sum is valid only when both converge 

P1: Linearity 

 The ROC can be larger than the intersection if one or more terms  in 

x[n] or y[n] cancel each other in the sum. 

 (1)u[n] — (DB u[— n — 1] 

 We have x[n <
 ___ 

Z > 

X(z) 
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P2: Time reversal 

 Time reversal or reflection corresponds to replacing z by z 
-1-. Hence, 

if RA, is of the form a < z1 < b then the ROC of the reflected signal is a 

<1/1z1< bor 1/ b< lz < 1/a 

If x[n] 
z 

X(z) , with ROC R„ 

Then x[— 12] 
Z 

X (  -1 ) ,  with ROC 
1 

Rx z 

Proof: Time reversal 

 Let y[n] xl n] 

Y(z) 17, x[— n] z- n 

Let 1 n, then 

Y(z) E– xilizi 

Y(z) ET— x[]] (1) - 1  

Y(z) X(1) 

P3: Time shift 

 Time shift of no in the time domain corresponds to multiplication of z–no in 

the z-domain 

If x[n] 
z 

X (z) , with ROC Rx 

Then x[n no] 
Z 

z -n°X(z), 

with ROC R,„ except z 0 or Izi  

P3: Time shift, no > 0 

 Multiplication by z–no introduces a pole of order no at z 0 

 The ROC can not include z 0, even if Rx does include z 0 

 If X(z) has a zero of at least order no at z 0 that cancels all of the 

new poles then ROC can include z = 0 

P3: Time shift, no < 0 

 Multiplication by z–no introduces no poles at infinity 

 If these poles are not canceled by zeros at infinity in X(z) then the ROC 

of z–noX(z) can not include Izi  
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Proof: Time shift 

 Let y[n] x[n no] 

Y(z)  _  x [ n  no] 

Let 1 -  no, then 

Y(z)  c „,, x[i] z— Or-Eno)  

Y(z) z— no IT _ x-[ i] zi 

Y(z) z —oX(z) 

P4: Multiplication by cca 

 Let a he a complex number 

If x[n] 
z 

X(z), with ROC R, 

Then an x[n] < Z > X(7 ), 
z 

with ROC lociRx 

 loc1Rx indicates that the ROC boundaries are multiplied by locl. 

 If Rx is a <1z1 < b then the new ROC is Iola < 1z1 < Falb 

 If X(z) contains a pole d, ie. the factor (z— d) is in the denominator 

then X((.) has a factor (z— ad) in the denominator and thus a pole at 

ad. 

 If X(z) contains a zero c, then X(f,) has a zero at ac 

 This indicates that the poles and zeros of X(z) have their radii changed 

by la 

 Their angles are changed by arg{a} 

lm{zl  

dirs[ci + Aigki 

 di 
i

 

I 
0 

 zi-plane 

(b) 
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 If la = 1 then the radius is unchanged and if a is -Eve real number then 

the angle is unchanged 

Proof: Multiplication by a 

 Let y n] x[n] 

Y(z) I c c '  x [n ]z -  
 

Y (4 1 )
41R—rn 

z 

 

Y (z) X(—) 
z 

a 

P5: Convolution 

 Convolution in time domain corresponds to multiplication in the z- 

domain If x[n] 
Z 

X(z), with ROC RxIf y[n] < Z > Y(z) with ROC Ry 

Then x[n] * y n] 
Z 

X (z)Y (z), 

with ROC at least Rxn R3 

 Similar to linearity the ROC may be larger than the intersection of R, 

and Ry 

Proof: Convolution 

 Let c[n] x[n] * y[n] 

(z )  X  (x[n]  *  An])  z  
 

C(z) E ( E x[k] * An Ic])) z 
 -  k - -  

C(z) x[k](( E y[n 
Ic])z-(n- ft) ) z  

 rr 
  

Y(z) 

C(z) ( y X[k]Z— k )1 7 (Z) 
 
 

X(z) 
 

C(z) X (z)Y (z) 
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P6: Differentiation in the z domain 

 Multiplication by II in the time domain corresponds to differentiation 

with respect to z and multiplication of the result by —z in the z-domain 

If x[n] 
Z 

X(z) , with R0( qx Then nx[n] 
Z 

z 1X(z) with ROC Rx  

 ROC remains unchanged 

Proof: Differentiation in the z domain 

 We know 

X(z)  
 

ti= - 

Differentiate with respect to z 

d 
X(z) I  (  ri)x[n]z—n z—  

d  

 Multiply with z 

z 

d 

X(z) (— n)x[n]z— nz 1z 
d z  

d 
X(z) I nx[n]z—n 

T  

Then nx[n] z ‘i,X(z) 
cl 

with ROC f?„ 
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Example 1 

Use the z-transform properties to determine the z-transform 

  x [ n ]  =  n ( ( 2
1 ) a u [ n ] ) * ( 1 ) - u u [ - n ]  

 Solution is: 

a[n] ( 2)nu[n] 
Z 

A(z) 
1 +1,1 ,  1z1> 2  

b[n] na[n]< Z > B(z) zd dzA(z)   
 

b[n] na[n] < Z r B(z) 
 (1+ _ 1 4

1
zz ))2

2 ' '  I  

_1, 
  

c[n] a i r u [ n ]<   >  C ( z )   
1 

Use the z-transform properties to determine the z-transform 

 x[n] = n(( -
2

1)hTu[n])*(4
1 ) -nu[-n] 

' d[n]    c[ n] ( 1 ) - a u[ n] 4 
D(z) C(1) 

1 4  z ,  I z l<  4  
11 

x[n] (b[n]* d[n]) X(z) B(z)D(z) ,  1 < Izi < 4 

x[n] (b[n]* d[n]) 
z    < 1z1 < 4 

 (t+12-)2 (1-12-)' 

x[n] (b[n]* d[n]) Z 2z  <Izl<  4 
 

Example 2 

Use the z-transform properties to determine the z-transform 

 x[n] an cos(S2on)u[n], where a is real and +ve 

 Solution is: 

b[n] = anu[n]  B(z)  _____1-az-1, Izi> 

a 

 

Put cos(Qon)  ± ze--1120`1, so we get ,  
x[n] = 26.-Punb[n]±e--11-2.'nb[n] 

Use the z-transform properties to determine the z-transform 

 x[n] ecos(520n)u[n], where a is real and -Eve 

 Solution continued 

x[n] < ___  > 
X(z) 

z 

B(e-4-2=z)±1.8(e---4-2 °z ) ,  I z l> a  

X[n] 
z 

X(z) i 1 
2 1 a w n = 1 + 2 1 o z _ i , i z i >  

x[11] 
z 

X(z) 
1-aej""z-'+i-ae-i[2. 

(( aeinoz-1)(1 -ae-.100z-1) 1 2 

x[n] <  __ > X(z) 
z 

1-lac IZ > a 
1-acos(120)z-1 
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Inverse Z transform:  

Three different methods are: 

1. Partial fraction method 

2. Power series method 

3. Long division method 
4. 

Partial fraction method:  
 In case of LTI systems, commonly encountered form of z-transform is 

B(z) 
X(z) =  A(z) 

X(z 
b0+ biz-1 + ... + bmz-M 

=  ao+ + + aNz-N ... 

Usually M < N 
 

 If M> N then use long division method and express X(z) in the form 

M-N B(z) 
X(z) y tkz"+ 

k=0 A(z) 

where p(z) now has the order one less than the denominator polynomial 

and use partial fraction method to find z-transform 

 The inverse z-transform of the terms in the summation are obtained from 

the transform pair and time shift property 

1 6[n] 

z  8[n - no] 

 If X(z) is expressed as ratio of polynomials in z instead of z-1 then convert 

into the polynomial of z-1- 

 Convert the denominator into product of first-order terms 

bo ± biz-1 + . - . ± bmz 
-M 

X(z) 
dkz-1) ao flk ,(1 

where dk are the poles of X(z) 

For distinct poles 

 For all distinct poles, the X(z) can be written as 

N Ak 
X(z) 

 dkZ1) k=i , 

 Depending on ROC, the inverse z-transform associated with each term is 

then determined by using the appropriate transform pair 

 We get 
Ak 

Ak(dk)nu[n] 
dkZ-1 1 
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with ROC z > dk OR 

z Ak 
- Ak(dk)" u[-n - 1] 

1 - clkz-1 

with ROC z< dk 

 For each term the relationship between the ROC associated with X(z) 

and each pole determines whether the right-sided or left sided inverse 

transform is selected 

For Repeated poles 

 If pole di is repeated r times, then there are 

fraction expansion associated with that pole 

terms in the partial- 

Ai, A„-  
1 diz- t ' ( 1  t  ) 2  '  (1 - diZ -1)r 

 Here also, the ROC of X(z) determines whether the right or left sided inverse 

transform is chosen. 

A

 ______________________ (

n ± 1). ..(n± m 

1) Z  (di)n 
diz-1)171

 ' 

with ROC 1z1 > 
(m - 1)! (1 

 If the ROC is of the form Izi 

chosen, ie. 

d,, the left-sided inverse z-transform is 

-A  (n+ 1) . . . (n± m —1)(di)" u[-I1 1] 
A 

with ROC1z1 < 
1)! (1 diz-1)177 (m 

Deciding ROC 

 The ROC of X(z) is the intersection of the ROCs associated with the  

individual terms in the partial fraction expansion. 

 In order to chose the correct inverse z-transform. we must infer the ROC 

of each term from the ROC of X(z). 

 By comparing the location of each pole with the ROC of X(z). 

 Chose the right sided inverse transform: if the ROC of X(z) has the 

radius greater than that of the pole associated with the given term 

 Chose the left sided inverse transform: if the ROC of X(z) has the radius 

less than that of the pole associated with the given term 

Partial fraction method 

 It can be applied to complex valued poles 

 Generally the expansion coefficients are complex valued 

 If the coefficients in X(z) are real valued, then the expansion coeffi- 

cients corresponding to complex conjugate poles will he complex conjugate 

of each other 
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 Here we use information other than ROC to get unique inverse trans- 

form 

 We can use causality, stability and existence of DTFT 

 If the signal is known to be causal then right sided inverse transform is 

chosen 

 If the signal is stable, then t is absolutely summable and has DTFT 

 Stability is equivalent to existence of DTFT, the ROC includes the unit 

circle in the z-plane, ie. IA = 1 

 The inverse z-transform is determined by comparing the poles and 

the unit circle 

 If the pole is inside the unit circle then the right-sided inverse z-

transform is chosen 

 If the pole is outside the unit circle then the left-sided inverse z-

transform is chosen 

Power series expansion method 

 Express X(z) as a power series in  z-1 or z as given in z-transform equa- 

tion 
 The values of the signal x[n] are then given by coefficient associated 

with z—n 

 Main disadvantage: limited to one sided signals 

 Signals with ROCs of the form 121 > a or 1z1 < a 

 If the ROC is IA > a, then express X(z) as a power series in z we get 

right sided signal 

-1
 and 

 If the ROC is 1z1 < a, then express X(z) as a power series in z and we get 

left sided signal 
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Long division method:  

 Find the z-transform of 

X(z) 
2 +z-1 

with ROC 1z1 > 
P—1,  1 

 Solution is: use long division method to write X(z) as a power series -

1, since ROC indicates that x[n] is right sided sequence in z 

 We get 

X(z) 2 + 2zz - 1 ± ± —z-- +. 
2 

 Compare with z-transform 

X(z) I  x [ n ]   
 

 

x[n] 26[n] + 28[n 1]+ 5[n— 2] 

+ —2[n   

 If we change the ROC to < 1,  then expand X(z) as a power series 

in z using long division method 

 We get 

X(z) 2 8z 16z2   

 We can write x[n] as 

r[n] 26[n] 86[n+ 1] 166[n+ 2] 

326 [n ± 3] ±  
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  Find the z-transforrn of  

X(z) e  , 
2 

with ROC all z except 121 — 

  Solution is:  use power series expansion for  ea  and is given by 

a 
ea 

 
k=0 

  We can wri te  X(z)  as  

X(z)  
k=0 

 

X(z} E 
k=0 

 

ki  

 We can write x[n] as 

{ 

0 n > 0 or n is odd 
r[n] 1 

( )1 '  otherwise 

Recommended Questions  

1. Using appropriate propertes fmd the Z-transform of x(n)=n2(1/3)nu(n-2) 

2. Determine the inverse Z- transform of X(z)=1/(2-z-1 +2 z-2) by long division method 

3. Determine all possible signals of x(n) associated with Z- transform 

X(z)= (1/4) z-1 / [1-(1/2) z-1 ][ 1-(1/4) z-1 ] 

4. State and prove time reversal property. Find value theorem of Z-transform. Using suitable 

properties, fmd the Z-transform of the sequences 

i) (n-2)(1/3)" u(n-2) 

(n+1)(1/2)n±1 Cos wo(n+1) u(n+1) ii) 

5. Consider a system whose difference equation is y(n - 1) + 2y(n) = x(n) 

i) Determine the zero-input response of this system, if y( -1) = 2. 

ii) Determine the zero state response of the system to the input x(n)=(114t u(n). 

iii) What is the frequency response of this system? 
iv) Find the unit impulse response of this system. 
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NIT 8: Z-Transforms — 2 Teaching hours: 6 

Z-transforms — 2: Transform analysis of LTI Systems, unilateral Z Transform and its application to 

solve difference equations. 
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UNIT 8  

Z-Transforms — 2 

8.1 Transform analysis of LTI systems:  

 We have defined the transfer function as the z-transform of the impulse 

response of an LTI system 

H(z) I h[k]z-A 
 

 Then we have y[n] x[n] * h[n] and Y(z) X(z)1/(z) 

. This is another method of representing the system 

. The transfer function can be written as 

H ( z) 
Y (z) 

X(z) 

 This is true for all z in the ROCs of X(z) and Y(z) for which X(z) in 

nonzero 

 The impulse response is the z-transform of the transfer function 

 We need to know ROC in order to uniquely find the impulse response 

 If ROC is unknown, then we must know other characteristics such as 

stability or causality in order to uniquely find the impulse response 

System identification 

 Finding a system description by using input and output is known as 

system identification 

 Exl : find the system, if the input is x[n] (— 1 I I 3)n u[n] and the out is 

v[n] 3(-1)n u n] (1 1 3)n u[n] 
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 Solution: Find the z-transform of input and output. Use X(z) and Y(z) to 

find H(z), then find h(n) using the inverse z-transform 

X(z) 
1 

with ROC 1z1 > 
 

1 
(1 ± (Dz-1)' 

Y(z) 
3 

± 
(A)z-1)' 

1 
with R0( Izi > 1 

(1 -rz-1) (1 

 We can write Y(z) as 

Y(z) 
4 

with ROC 1z1 > 1 
(1 +z- 1)(1 )z  1) (3 

 We know H(z) Y (z) / X(z), so we get 

1/(z) 
4(1 + (4)z-1) 

with ROC 1z1 1 
(1 ±z-1)(1 (Dz-1) 

 We need to find inverse z-transform to find x[n], so use partial fraction and 

write H(z) as 

2 2 
H(z) 

1 ±z- 
1- + with ROC 1z1 > 1 

1 (A) z- 1 

 Impulse response x[n] is given by 

h[n] 1)n u[n] ± 2(113)n u[n] 

Relation between transfer function and difference equation 

 The transfer can be obtained directly from the difference-equation de- 

scription of an LTI system 

 We know that 
N M 
I  a `  - n  k] I bkx[n k] 
k=0 k=0 

 We know that the transfer function 11(z) is an eigen value of the system 

associated with the eigen function zn, ie. if 4n] z" then the output of 

an LTI system y]n] z"  H(z) 

 Put x[n k]  k  and  y  n  k] z"11(z) in the difference equation, 
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we get 
N M 

2 E akz' 11(z) zu E bkZ— k 
k=0 k=0 

 We can solve for 11(4 

kM=°bkZik 

H(z) 
k-0 akZ 

k 

 The transfer function described by a difference equation is a ratio of 

polynomials in z-1- and is termed as a rational transfer function. 

 The coefficient of Z— k in the numerator polynomial is the coefficient 

associated with x[n k] in the difference equation 

 The coefficient of z k in the denominator polynomial is the coefficient 

associated with y[n k] in the difference equation 

 This relation allows us to find the transfer function and also find the 

difference equation description for a system, given a rational function 
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Transfer function:  

 The poles and zeros of a rational function offer much insight into LTI system 

characteristics 

 The transfer function can be expressed i n pole-zero form by factoring 

the numerator and denominator polynomial 

 If ck and dk are zeros and poles of the system respectively and b 

boiao is the gain factor, then 

Mrk= 1(1 
_ ckz 

1 

) 
H(z) 

H,N=1(1  dkZ } 

 This form assumes there are no poles and zeros at z 0 

 The pt order pole at z 0 occurs when bo b1 bi,_1 0 

 The order zero at z 0 occurs when ao ai 0  aj_ i 

 Then we can write H(z) as 

H(z) 
bz—P I1k1 M=—P(1 ckz-1) 

z-11-1Nk=11(1 dk z-1) 

where b bplai 

 In the example we had first order pole at z n 

 The poles, zeros and gain factor b uniquely determine the transfer func- 

tion 

 This is another description for input-output behavior of the system 

 The poles are the roots of characteristic equation 
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8.2 Unilateral Z- transforms:  

 Useful in case of causal signals and LTI systems 

 The choice of time origin is arbitrary, so we may choose n U as the 

time at which the input is applied and then study the response for times 

n > 0 

Advantages 

 We do not need to use ROCs 

 It allows the study of LTI systems described by the difference equation 

with initial conditions 

Unilateral z-transform 

 The unilateral z-transform of a signal x[n] is defined as 

X(z) y  x [ n ] z  
n=0 

which depends only on x[n] for n > 0 

 The unilateral and bilateral z-transforms are equivalent for causal sig- 

nals 

ocnurn] 
z,, 1 

1 ocz-1 

a' cos ( i2„n)u [n]   
zu 1 — acos(c20)z-1 

2acos(flo)z-1 + a2 z-2 1 

Properties of unilateral Z transform:  

 Consider the difference equation description of an LTI system 

N m 

Eaky n k] I bkx[n k] 
k=0 k=0 

 We may write the z-transform as 

A(z)Y (z) + C(z) B(z)X(z) 

where 

A(z) 
 -k 

and B(z) 
M 

akz I bkz-k 

k=0 k=0 
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 The same properties are satisfied by both unilateral and bilateral 

z-transforms with one exception: the time shift property 

 The time shift property for unilateral z-transform: Let w[n] x[n 1] 

 The unilateral z-transform of w[n] is 

W(z) I  w[n] z " E x[n 1] z—  
11--0 n=o 

W(z) xl  1] 2-- n 1]+ ,x[n 
II=1 

W(Z) XI 11 ± y x[m]z-(-1-1) 

„,==0 

 The unilateral z-transform of w[n] is 

W(z)  1] +z 
I 

X x[m]  
rn—o 

W(z) x[ 1] ±z I - X(z) 

 A one-unit time shift results in multiplication by z-1 and addition of 

the constant x[ 1] 

 In a similar way, the time-shift property for delays greater than unity is 

x[n k] 
Zu 

x[— x[— k + 1] z— 1+ 

+x[ 11z — k+1 ± Z-kX( 4 for k> 0 

 In the case of time advance, the time-shift property changes to 

x[n +- lc] 
zu 

 4 1izk-1 ± 

. . .  l]z + zkX (z) for k> 0 
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8.3 Application to solve difference equations 

Solving Differential equations using initial conditions:  

  We get  

C(z) 

N-1 
a ky[ k ± in] z— m 

 n7=0 k=n7±1 

 We have assumed that x[n] is causal and 

k]  k X (z) x[n 

 The term C(z) depends on the N initial conditions y[ 1]  0[-2]  y_—N] 

and the a k 

 C(z) is zero if all the initial conditions are zero 

 Solving for Y(z), gives 

Y(z) 

B(z) 

X(z) 

C(z) 

4(z) A(z) 

 The output is the sum of the forced response due to the input and the 

natural response induced by the initial conditions 

 The forced response due to the input 

B(z) 

A( A 

X(z) 

 The natural response induced by the initial conditions 

0(z) 

A(z) 

 C(z) is the polynomial, the poles of the natural response are the roots 

of A(z), which are also the poles of the transfer function 
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 The form of natural response depends only on the poles of the system, 

which are the roots of the characteristic equation 

First order recursive system 

 Consider the first order system described by a difference equation 

y[n] py[n 1] x[n] 

where p 1 ± r /100, and r is the interest rate per period in percent and 

y[n] is the balance after the deposit or withdrawal of x[n] 

 Assume bank account has an initial balance of $10,000!- and earns 6% 

interest compounded monthly. Starting in the first month of the second 

year, the owner withdraws $100 per month from the account at the 

beginning of each month. Determine the balance at the start of each 

month 

 Solution: Take unilateral z-transform and use time-shift property Am 

get 

Y(z) p (y[— 1] ± z— 1 1 ' (z)) X (z) 

 Rearrange the terms to find Y(z), we get 

( 1 pz 1 )Y (z) X (z) ± p y 1] 

X (z) P —1] 
Y(z) pz-1± 1 — p z-1 1 
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Y(z) consists of two terms 

— one that depends on the input: the forced response of the system 

another that depends on the initial conditions: the natural 

response Df the system 

— 

 The initial balance of $10,000 at the start of the first month is the initial 

condition A-1 , and there is an offset of two between the time index n 

and the month index 

 y n] represents the balance in the account at the start of the n + 2nd 

month. 

 We have p 1 + 1oa 
 1.005 

 Since the owner withdraws $100 per month at the start of month 13 

(11 11) 

 We may express the input to the system as x[n] 100 u[n 11] , we 

get 

100z-11 
X(z} 

I z-1 

 We get 

- 100z 
11 

L005(10,000) 
Y(z) 

+ 

1.005z-1) 1-1.005z  (1 - z-1)(1 - 

 After a partial fraction expansion we get 

20, 000z-11 20, 000z-11 10,050 
Y(z) + + 

1 -1.005z-1 1 1.005z-1 1 - z-1 

 Monthly account balance is obtained by inverse z-transforming Y(z) 

We get 

y[n] 20,000u[n- 11] 20,000(1.005)' 11u[n 11] 

± 10, 050(1_005)n u[n] 

 The last term 10, 050(1.005)Thu[n] is the natural response with the ini-

tial balance 

 The account balance 

 The natural balance 

 The forced response 

. Page 120 



 

 

 

 

Signals & Systems 10EC44 

Recommended Questions  

1. Find the inverse Z transform of 

H(z)= 
1 + z-1 

(1 - 0.9eini 4z-1)(1- 0.9e
-
in/4z-1) 

2. A system is described by the difference equation 

Y (n) - y n - 1) + -1 y(n - 2) = x (n) + 1 / 4 x(n - 1)- 1 / 8x (n - 2) 
4 

Find the Transfer function of the Inverse system 
Does a stable and causal Inverse system exists 

3. Sketch the magnitude response for the system having transfer functions. 

4. Find the z-transform of the following x[n]: 

(a) x[n] - (1,1,- } 

(b) x[n] 26(n + 2] - 38( n 2] 

(c) x[n] 3(_ 1
2)'  [n1- (3Y -n - 1]  

(d) x[n] 

3(1)'u[n] 
- 2(DI tit -n - 1] 

5. Given 
z(z - 4) 

(z) 
3 ) ( z 2)( z 

(a) State all the possible regions of convergence. 
(b) For which ROC is X (z) the z-transform of a causal sequence? 

6. Show the following properties for the z-transform. 

(a) If x[n] is even, then X(z - X(2), 

(b) If x(n) is odd, then X(z - 1)- -X(z), 

If x[n] 
is 

 odd, then there is a zero in X(z) at z 1. 

7. Derive the following transform 

(cos glon)u[ ' 
 — (cos 11.0) z 

 
z2 (2ccis 110)2 + 1  

(sin llon)u[ n ) 4-+ 
(sin fl0)z 

_ 

8. Find the z-transforms of the following x[n]: 

(a) x[n] = (n - 3)utn - 
5J ( b )  x [ n ]  ( n  

( c )  x[n] = 
u[n] 

- 

- - 3] 

(d) x[n] 

niu[n] 
= u[n - 3]) 
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9. Using the relation 

a n 4  :  
z 

1:1>1u  
 

fmd the z-transform of the following x[n]: 

(a) na' 1 u[n] 

(b) An] n(n - 1)a -"zu[n] 

x[n] n ( n  1) • . • (n -  -- I 41" -' Li[] n 

10. Using the z-transform 

(a) x(n]* an] 

(b) x(rd* 5(n 

-  x[n] 

-  =  -  

H. Find the inverse z-transform of X(z)= e
ak 

, z > 0 

12. Using the method of long division, fmd the inverse z-transform of the following X (z): 
2 

(a) X.(z) 

 z - 2) 
, 121 < 1 

( z - 

( b )  X ( z ) -  ,  1  <1z1<  
( z 1)(z - 2) 

X(z) 
z 

i 1z1> 2 
( z - 1 ) ( : - 2 ) 

13. Consider the system shown in Fig. 4-9. Find the system function H (z) and its impulse response 
h[n] 

- -  0 Hc 
i 

 
 

A  

A 
1 k 

J  d 

14. Consider a discrete-time LTI system whose system function H (z) is given by 
 

d '  
 

 .  
 _) 

(a) Find the step response s[n]. 

(b) Find the output y[n] to the input x[n]  = nu[n]. 

15. Consider a causal discrete-time system whose output y[n] and input x[n] are related by 

' - - ÷ - 21 - ' 

(a) Find its system function I-1(z). 
(b) Find its impulse response h[n]. 
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