
11.1

PMcL Contents Index

2015 11 - Real-Time Operating Systems

11 Real-Time Operating Systems

Contents

Introduction ... 11.2

11.1 Real-Time Kernel Concepts .. 11.3

11.1.1 Threads ... 11.3

11.1.2 Context Switch ... 11.4

11.1.3 Kernel ... 11.4

11.1.4 Scheduler .. 11.4

11.2 Reentrancy ... 11.6

11.3 Thread Priority ... 11.7

11.3.1 Static Priorities ... 11.7

11.3.2 Dynamic Priorities .. 11.7

11.3.3 Priority Inversions .. 11.7

11.4 Mutual Exclusion ... 11.8

11.4.1 Disabling and Enabling Interrupts .. 11.8

11.4.2 Semaphores ... 11.9

11.4.3 Deadlock (or Deadly Embrace) .. 11.16

11.5 Synchronization ... 11.17

11.6 Interthread Communication ... 11.19

11.6.1 Message Mailboxes .. 11.20

11.6.2 Message Queues ... 11.21

11.7 Interrupts .. 11.23

11.7.1 Interrupt Latency .. 11.24

11.7.2 Interrupt Response .. 11.24

11.7.3 Interrupt Recovery .. 11.25

11.7.4 Interrupt Latency, Response, and Recovery 11.26

11.7.5 ISR Processing Time .. 11.27

11.7.6 Clock Tick .. 11.28

11.8 Memory Requirements .. 11.30

11.9 Advantages and Disadvantages of Real-Time Operating Systems 11.32

11.2

Index Introduction PMcL

11 - Real-Time Operating Systems 2015

Introduction

A real-time operating system (RTOS) for an embedded system simplifies the

design of real-time software by allowing the application to be divided into

multiple threads managed by the RTOS. The kernel of an embedded RTOS

needs to support multithreading, pre-emption, and thread priority. The RTOS

will also provide services to threads for communication, synchronization and

coordination. A RTOS is to be used for a “hard” real-time system – i.e. threads

have to be performed not only correctly but also in a timely fashion.

Operating systems for larger computers (such as the PC) are non-real-time

operating systems and usually provide a much larger range of application

services, such as memory management and file management which normally

do not apply to embedded systems.

11.3

PMcL Real-Time Kernel Concepts Index

2015 11 - Real-Time Operating Systems

11.1 Real-Time Kernel Concepts

The following sections describe real-time kernel concepts.

11.1.1 Threads

A thread is a simple program that thinks it has the CPU all to itself. The design

process for a real-time application involves splitting the work to be done into

threads which are responsible for a portion of the problem. Each thread is

assigned a priority, its own set of CPU registers and its own stack area.

Each thread is typically an infinite loop that can be in one of four states:

READY, RUNNING, WAITING or INTERRUPTED.

READY RUNNING

Resource Available Thread Waiting for Resource

Context Switch

WAITING

INTERRUPTED
Interrupt

Figure 11.1 – Thread states

A thread is READY when it can execute but its priority is less than the current

running thread. A thread is RUNNING when it has control of the CPU. A thread

is WAITING when the thread suspends itself until a certain amount of time has

elapsed, or when it requires the occurrence of an event: waiting for an I/O

operation to complete, a shared resource to be available, a timing pulse to

occur etc. Finally, a thread is INTERRUPTED when an interrupt occurred and

the CPU is in the process of servicing the interrupt.

11.4

Index Real-Time Kernel Concepts PMcL

11 - Real-Time Operating Systems 2015

11.1.2 Context Switch

When the multithreading kernel decides to run a different thread, it simply

saves the current thread’s context (CPU registers) in the current thread’s

context storage area (the thread control block, or TCB). Once this operation is

performed, the new thread’s context is restored from its TCB and the CPU

resumes execution of the new thread’s code. This process is called a context

switch. Context switching adds overhead to the application.

11.1.3 Kernel

The kernel is the part of an OS that is responsible for the management of

threads (i.e., managing the CPU’s time) and for communication between

threads. The fundamental service provided by the kernel is context switching.

11.1.4 Scheduler

The scheduler is the part of the kernel responsible for determining which thread

will run next. Most real-time kernels are priority based. Each thread is assigned

a priority based on its importance. Establishing the priority for each thread is

application specific. In a priority-based kernel, control of the CPU will always

be given to the highest priority thread ready to run. In a preemptive kernel,

when a thread makes a higher priority thread ready to run, the current thread is

pre-empted (suspended) and the higher priority thread is immediately given

control of the CPU. If an interrupt service routine (ISR) makes a higher priority

thread ready, then when the ISR is completed the interrupted thread is

suspended and the new higher priority thread is resumed.

High-Priority Thread

Low-Priority Thread

Time

ISR

Low-Priority Thread
ISR makes the high-
priority thread ready

Figure 11.2 – Preemptive kernel

11.5

PMcL Real-Time Kernel Concepts Index

2015 11 - Real-Time Operating Systems

With a preemptive kernel, execution of the highest priority thread is

deterministic; you can determine when the highest priority thread will get

control of the CPU.

Application code using a preemptive kernel should not use non-reentrant

functions, unless exclusive access to these functions is ensured through the use

of mutual exclusion semaphores, because both a low- and a high-priority thread

can use a common function. Corruption of data may occur if the higher priority

thread preempts a lower priority thread that is using the function.

To summarize, a preemptive kernel always executes the highest priority thread

that is ready to run. An interrupt preempts a thread. Upon completion of an

ISR, the kernel resumes execution to the highest priority thread ready to run

(not the interrupted thread). Thread-level response is optimum and

deterministic.

11.6

Index Reentrancy PMcL

11 - Real-Time Operating Systems 2015

11.2 Reentrancy

A reentrant function can be used by more than one thread without fear of data

corruption. A reentrant function can be interrupted at any time and resumed at

a later time without loss of data. Reentrant functions either use local variables

(i.e., CPU registers or variables on the stack) or protect data when global

variables are used. An example of a reentrant function is shown below:

char* strcpy(char* dst, const char* src)

{

 char* ptr = dst;

 while (*dst++ = *src++);

 return ptr;

}

Since copies of the arguments to strcpy() are placed on the thread's stack,

and the local variable is created on the thread’s stack, strcpy() can be

invoked by multiple threads without fear that the threads will corrupt each

other's pointers.

An example of a non-reentrant function is shown below:

static int Temp;

void swap(int* x, int* y)

{

 Temp = *x;

 *x = *y;

 *y = Temp;

}

swap() is a simple function that swaps the contents of its two arguments.

Since Temp is a global variable, if the swap() function gets preempted after

the first line by a higher priority thread which also uses the swap() function,

then when the low priority thread resumes it will use the Temp value that was

used by the high priority thread.

You can make swap() reentrant with one of the following techniques:

 Declare Temp local to swap().

 Disable interrupts before the operation and enable them afterwards.

 Use a semaphore.

11.7

PMcL Thread Priority Index

2015 11 - Real-Time Operating Systems

11.3 Thread Priority

A priority is assigned to each thread. The more important the thread, the higher

the priority given to it.

11.3.1 Static Priorities

Thread priorities are said to be static when the priority of each thread does not

change during the application's execution. Each thread is thus given a fixed

priority at compile time. All the threads and their timing constraints are known

at compile time in a system where priorities are static.

11.3.2 Dynamic Priorities

Thread priorities are said to be dynamic if the priority of threads can be

changed during the application's execution; each thread can change its priority

at run time. This is a desirable feature to have in a real-time kernel to avoid

priority inversions.

11.3.3 Priority Inversions

Priority inversion is a problem in real-time systems and occurs mostly when

you use a real-time kernel. Priority inversion is any situation in which a low

priority thread holds a resource while a higher priority thread is ready to use it.

In this situation the low priority thread prevents the high priority thread from

executing until it releases the resource.

To avoid priority inversion a multithreading kernel should change the priority

of a thread automatically to help prevent priority inversions. This is called

priority inheritance.

11.8

Index Mutual Exclusion PMcL

11 - Real-Time Operating Systems 2015

11.4 Mutual Exclusion

The easiest way for threads to communicate with each other is through shared

data structures. This is especially easy when all threads exist in a single address

space and can reference global variables, pointers, buffers, linked lists, FIFOs,

etc. Although sharing data simplifies the exchange of information, you must

ensure that each thread has exclusive access to the data to avoid contention and

data corruption. The most common methods of obtaining exclusive access to

shared resources are:

 disabling interrupts,

 performing test-and-set operations,

 disabling scheduling, and

 using semaphores.

11.4.1 Disabling and Enabling Interrupts

The easiest and fastest way to gain exclusive access to a shared resource is by

disabling and enabling interrupts, as shown in the pseudocode:

Disable interrupts;

Access the resource (read/write from/to variables);

Reenable interrupts;

Kernels use this technique to access internal variables and data structures. In

fact, kernels usually provide two functions that allow you to disable and then

enable interrupts from your C code: OS_EnterCritical() and

OS_ExitCritical(), respectively. You need to use these functions in

tandem, as shown below:

void Function(void)

{

 OS_EnterCritical();

 ·

 · /* You can access shared data in here */

 ·

 OS_ExitCritical();

}

You must be careful, however, not to disable interrupts for too long because

this affects the response of your system to interrupts. This is known as interrupt

latency. You should consider this method when you are changing or copying a

11.9

PMcL Mutual Exclusion Index

2015 11 - Real-Time Operating Systems

few variables. Also, this is the only way that a thread can share variables or

data structures with an ISR. In all cases, you should keep interrupts disabled

for as little time as possible.

If you use a kernel, you are basically allowed to disable interrupts for as much

time as the kernel does without affecting interrupt latency. Obviously, you

need to know how long the kernel will disable interrupts.

11.4.2 Semaphores

The semaphore was invented by Edgser Dijkstra in the mid-1960s. It is a

protocol mechanism offered by most multithreading kernels. Semaphores are

used to:

 control access to a shared resource (mutual exclusion),

 signal the occurrence of an event, and

 allow two threads to synchronize their activities.

A semaphore is a key that your code acquires in order to continue execution. If

the semaphore is already in use, the requesting thread is suspended until the

semaphore is released by its current owner. In other words, the requesting

thread says: ''Give me the key. If someone else is using it, I am willing to wait

for it!" There are two types of semaphores: binary semaphores and counting

semaphores. As its name implies, a binary semaphore can only take two values:

0 or 1. A counting semaphore allows values between 0 and 255, 65535, or

4294967295, depending on whether the semaphore mechanism is implemented

using 8, 16, or 32 bits, respectively. The actual size depends on the kernel used.

Along with the semaphore's value, the kernel also needs to keep track of

threads waiting for the semaphore's availability.

Generally, only three operations can be performed on a semaphore:

Create(), Wait(), and Signal(). The initial value of the semaphore

must be provided when the semaphore is initialized. The waiting list of threads

is always initially empty.

11.10

Index Mutual Exclusion PMcL

11 - Real-Time Operating Systems 2015

A thread desiring the semaphore will perform a Wait() operation. If the

semaphore is available (the semaphore value is greater than 0), the semaphore

value is decremented and the thread continues execution. If the semaphore's

value is 0, the thread performing a Wait() on the semaphore is placed in a

waiting list. Most kernels allow you to specify a timeout; if the semaphore is

not available within a certain amount of time, the requesting thread is made

ready to run and an error code (indicating that a timeout has occurred) is

returned to the caller.

A thread releases a semaphore by performing a Signal() operation. If no

thread is waiting for the semaphore, the semaphore value is simply

incremented. If any thread is waiting for the semaphore, however, one of the

threads is made ready to run and the semaphore value is not incremented; the

key is given to one of the threads waiting for it. Depending on the kernel, the

thread that receives the semaphore is either:

 the highest priority thread waiting for the semaphore, or

 the first thread that requested the semaphore (First In First Out).

Some kernels have an option that allows you to choose either method when the

semaphore is initialized. For the first option, if the readied thread has a higher

priority than the current thread (the thread releasing the semaphore), a context

switch occurs (with a preemptive kernel) and the higher priority thread resumes

execution; the current thread is suspended until it again becomes the highest

priority thread ready to run.

Listing 11.1 shows how you can share data using a semaphore. Any thread

needing access to the same shared data calls OS_SemaphoreWait(), and

when the thread is done with the data, the thread calls

OS_SemaphoreSignal(). Both of these functions are described later. You

should note that a semaphore is an object that needs to be initialized before it is

used; for mutual exclusion, a semaphore is initialized to a value of 1. Using a

semaphore to access shared data doesn't affect interrupt latency. If an ISR or

11.11

PMcL Mutual Exclusion Index

2015 11 - Real-Time Operating Systems

the current thread makes a higher priority thread ready to run while accessing

shared data, the higher priority thread executes immediately.

OS_ECB* SharedDataSemaphore;

void Function(void)

{

 OS_ERROR error;

 error = OS_SemaphoreWait(SharedDataSemaphore, 0);

 ·

 · // You can access shared data in here

 . // (interrupts are recognized)

 ·

 error = OS_SemaphoreSignal(SharedDataSemaphore);

}

Listing 11.1 – Accessing shared data by obtaining a semaphore

Semaphores are especially useful when threads share I/O devices. Imagine

what would happen if two threads were allowed to send characters to a printer

at the same time. The printer would contain interleaved data from each thread.

For instance, the printout from Thread 1 printing "I am Thread 1!" and

Thread 2 printing "I am Thread 2!" could result in:

“I Ia amm T Threahread d1 !2!”

In this case, use a semaphore and initialize it to 1 (i.e., a binary semaphore).

The rule is simple: to access the printer each thread first must obtain the

resource's semaphore.

11.12

Index Mutual Exclusion PMcL

11 - Real-Time Operating Systems 2015

Figure 11.3 shows threads competing for a semaphore to gain exclusive access

to the printer. Note that the semaphore is represented symbolically by a key,

indicating that each thread must obtain this key to use the printer.

Acquire semaphore

PRINTER

THREAD 2

THREAD 1

SEMAPHORE

Acquire semaphore

"I am Thread 1!"

"I am Thread 2!"

Figure 11.3 – Using a semaphore to get permission to access a printer

The above example implies that each thread must know about the existence of

the semaphore in order to access the resource. There are situations when it is

better to encapsulate the semaphore. Each thread would thus not know that it is

actually acquiring a semaphore when accessing the resource. For example, the

UART port may be used by multiple threads to send commands and receive

responses from a PC:

DRIVER

THREAD 2

THREAD 1

Semaphore

Packet_Put()

Packet_Put()

UART

Figure 11.4 – Hiding a semaphore from threads

11.13

PMcL Mutual Exclusion Index

2015 11 - Real-Time Operating Systems

The function Packet_Put() is called with two arguments: the packet and a

timeout in case the device doesn't respond within a certain amount of time. The

pseudocode for this function is shown in Listing 11.2.

uint8_t Packet_Put(TPacket* packet, const uint16_t timeout)

{

 Acquire serial port's semaphore;

 Send packet to device;

 Wait for response (with timeout);

 Release semaphore;

 if (timed out)

 return (error code);

 else

 return (no error);

}

Listing 11.2 – Encapsulating a semaphore

Each thread that needs to send a packet to the serial port has to call this

function. The semaphore is assumed to be initialized to 1 (i.e., available) by the

communication driver initialization routine. The first thread that calls

Packet_Put() acquires the semaphore, proceeds to send the packet, and waits

for a response. If another thread attempts to send a command while the port is

busy, this second thread is suspended until the semaphore is released. The

second thread appears simply to have made a call to a normal function that will

not return until the function has performed its duty. When the semaphore is

released by the first thread, the second thread acquires the semaphore and is

allowed to use the serial port.

11.14

Index Mutual Exclusion PMcL

11 - Real-Time Operating Systems 2015

A counting semaphore is used when a resource can be used by more than one

thread at the same time. For example, a counting semaphore is used in the

management of a buffer pool as shown in Figure 11.5.

Buffer_Request()

THREAD 2THREAD 1

10

Buffer manager

next nextBufFreeList next NULL

Buffer_Release()

Figure 11.5 – Using a counting semaphore

Assume that the buffer pool initially contains 10 buffers. A thread would

obtain a buffer from the buffer manager by calling Buffer_Request().

When the buffer is no longer needed, the thread would return the buffer to the

buffer manager by calling Buffer_Release(). The pseudocode for these

functions is shown in Listing 11.3.

BUF* Buffer_Request(void)

{

 BUF* ptr;

 Acquire a semaphore;

 Disable interrupts;

 ptr = BufFreeList;

 BufFreeList = ptr->next;

 Enable interrupts;

 return (ptr);

}

11.15

PMcL Mutual Exclusion Index

2015 11 - Real-Time Operating Systems

void Buffer_Release(BUF* ptr)

{

 Disable interrupts;

 ptr->next = BufFreeList;

 BufFreeList = ptr;

 Enable interrupts;

 Release semaphore;

}

Listing 11.3 – Buffer management using a semaphore

The buffer manager will satisfy the first 10 buffer requests because there are 10

keys. When all semaphores are used, a thread requesting a buffer is suspended

until a semaphore becomes available. Interrupts are disabled to gain exclusive

access to the linked list (this operation is very quick). When a thread is finished

with the buffer it acquired, it calls Buffer_Release() to return the buffer

to the buffer manager; the buffer is inserted into the linked list before the

semaphore is released. By encapsulating the interface to the buffer manager in

Buffer_Request() and Buffer_Release(), the caller doesn't need to

be concerned with the actual implementation details.

Semaphores are often overused. The use of a semaphore to access a simple

shared variable is overkill in most situations. The overhead involved in

acquiring and releasing the semaphore can consume valuable time. You can do

the job just as efficiently by disabling and enabling interrupts. Suppose that

two threads are sharing a 32-bit integer variable. The first thread increments

the variable while the other thread clears it. If you consider how long a

processor takes to perform either operation, you will realize that you do not

need a semaphore to gain exclusive access to the variable. Each thread simply

needs to disable interrupts before performing its operation on the variable and

enable interrupts when the operation is complete. A semaphore should be used,

however, if the variable is a floating-point variable and the microprocessor

doesn't support floating point in hardware. In this case, the processing time

involved in processing the floating-point variable could have affected interrupt

latency if you had disabled interrupts.

11.16

Index Mutual Exclusion PMcL

11 - Real-Time Operating Systems 2015

11.4.3 Deadlock (or Deadly Embrace)

A deadlock, also called a deadly embrace, is a situation in which two threads

are each unknowingly waiting for resources held by the other. Assume thread

T1 has exclusive access to resource R1 and thread T2 has exclusive access to

resource R2. If T1 needs exclusive access to R2 and T2 needs exclusive access

to R1, neither thread can continue. They are deadlocked. The simplest way to

avoid a deadlock is for threads to:

 acquire all resources before proceeding,

 acquire the resources in the same order, and

 release the resources in the reverse order

Most kernels allow you to specify a timeout when acquiring a semaphore. This

feature allows a deadlock to be broken. If the semaphore is not available within

a certain amount of time, the thread requesting the resource resumes execution.

Some form of error code must be returned to the thread to notify it that a

timeout occurred. A return error code prevents the thread from thinking it has

obtained the resource. Deadlocks generally occur in large multithreading

systems, not in embedded systems.

11.17

PMcL Synchronization Index

2015 11 - Real-Time Operating Systems

11.5 Synchronization

A thread can be synchronized with an ISR (or another thread when no data is

being exchanged) by using a semaphore as shown in Figure 11.6.

ISR THREAD
Signal Wait

THREAD
Signal Wait

THREAD

Figure 11.6 – Synchronizing threads and ISRs

Note that, in this case, the semaphore is drawn as a flag to indicate that it is

used to signal the occurrence of an event (rather than to ensure mutual

exclusion, in which case it would be drawn as a key). When used as a

synchronization mechanism, the semaphore is initialized to 0. Using a

semaphore for this type of synchronization is called a unilateral rendezvous. A

thread initiates an I/O operation and waits for the semaphore. When the I/O

operation is complete, an ISR (or another thread) signals the semaphore and the

thread is resumed.

If the kernel supports counting semaphores, the semaphore would accumulate

events that have not yet been processed. Note that more than one thread can be

waiting for an event to occur. In this case, the kernel could signal the

occurrence of the event either to:

 the highest priority thread waiting for the event to occur or

 the first thread waiting for the event.

Depending on the application, more than one ISR or thread could signal the

occurrence of the event.

11.18

Index Synchronization PMcL

11 - Real-Time Operating Systems 2015

Two threads can synchronize their activities by using two semaphores, as

shown in Figure 11.7. This is called a bilateral rendezvous. A bilateral

rendezvous is similar to a unilateral rendezvous, except both threads must

synchronize with one another before proceeding.

THREAD

Signal Wait

SignalWait

THREAD

Figure 11.7 – Threads synchronizing their activities

For example, two threads are executing as shown in Listing 11.4. When the

first thread reaches a certain point, it signals the second thread (1) then waits

for a return signal (2). Similarly, when the second thread reaches a certain

point, it signals the first thread (3) and waits for a return signal (4). At this

point, both threads are synchronized with each other. A bilateral rendezvous

cannot be performed between a thread and an ISR because an ISR cannot wait

on a semaphore.

void Thread1(void)

{

 for (;;)

 {

 Perform operation 1;

 Signal thread #2; (1)

 Wait for signal from thread #2; (2)

 Continue operation 1;

 }

}

void Thread2(void)

{

 for (;;)

 {

 Perform operation 2;

 Signal thread #1; (3)

 Wait for signal from thread #1; (4)

 Continue operation 2;

 }

}

Listing 11.4 – Bilateral rendezvous

11.19

PMcL Interthread Communication Index

2015 11 - Real-Time Operating Systems

11.6 Interthread Communication

It is sometimes necessary for a thread or an ISR to communicate information to

another thread. This information transfer is called interthread communication.

Information may be communicated between threads in two ways: through

global data or by sending messages.

When using global variables, each thread or ISR must ensure that it has

exclusive access to the variables. If an ISR is involved, the only way to ensure

exclusive access to the common variables is to disable interrupts. If two threads

are sharing data, each can gain exclusive access to the variables either by

disabling and enabling interrupts or with the use of a semaphore (as we have

seen). Note that a thread can only communicate information to an ISR by using

global variables. A thread is not aware when a global variable is changed by an

ISR, unless the ISR signals the thread by using a semaphore or unless the

thread polls the contents of the variable periodically. To correct this situation,

you should consider using either a message mailbox or a message queue.

11.20

Index Interthread Communication PMcL

11 - Real-Time Operating Systems 2015

11.6.1 Message Mailboxes

Messages can be sent to a thread through kernel services. A Message Mailbox,

also called a message exchange, is typically a pointer-size variable. Through a

service provided by the kernel, a thread or an ISR can deposit a message (the

pointer) into this mailbox. Similarly, one or more threads can receive messages

through a service provided by the kernel. Both the sending thread and receiving

thread agree on what the pointer is actually pointing to.

A waiting list is associated with each mailbox in case more than one thread

wants to receive messages through the mailbox. A thread desiring a message

from an empty mailbox is suspended and placed on the waiting list until a

message is received. Typically, the kernel allows the thread waiting for a

message to specify a timeout. If a message is not received before the timeout

expires, the requesting thread is made ready to run and an error code

(indicating that a timeout has occurred) is returned to it. When a message is

deposited into the mailbox, either the highest priority thread waiting for the

message is given the message (priority based) or the first thread to request a

message is given the message (First-In-First-Out, or FIFO). Figure 11.8 shows

a thread depositing a message into a mailbox. Note that the mailbox is

represented by an I-beam and the timeout is represented by an hourglass. The

number next to the hourglass represents the number of clock ticks the thread

will wait for a message to arrive.

THREAD
POST WAIT

THREAD

10

Mailbox

Figure 11.8 – Message mailbox

11.21

PMcL Interthread Communication Index

2015 11 - Real-Time Operating Systems

Kernels typically provide the following mailbox services:

 Initialize the contents of a mailbox. The mailbox initially may or may

not contain a message.

 Deposit a message into the mailbox (POST).

 Wait for a message to be deposited into the mailbox (WAIT).

 Get a message from a mailbox if one is present, but do not suspend the

caller if the mailbox is empty (ACCEPT). If the mailbox contains a

message, the message is extracted from the mailbox. A return code is

used to notify the caller about the outcome of the call.

Message mailboxes can also simulate binary semaphores. A message in the

mailbox indicates that the resource is available, and an empty mailbox

indicates that the resource is already in use by another thread.

11.6.2 Message Queues

A message queue is used to send one or more messages to a thread. A message

queue is basically an array of mailboxes. Through a service provided by the

kernel, a thread or an ISR can deposit a message (the pointer) into a message

queue. Similarly, one or more threads can receive messages through a service

provided by the kernel. Both the sending thread and receiving thread agree as

to what the pointer is actually pointing to. Generally, the first message inserted

in the queue will be the first message extracted from the queue (FIFO).

As with the mailbox, a waiting list is associated with each message queue, in

case more than one thread is to receive messages through the queue. A thread

desiring a message from an empty queue is suspended and placed on the

waiting list until a message is received. Typically, the kernel allows the thread

waiting for a message to specify a timeout. If a message is not received before

the timeout expires, the requesting thread is made ready to run and an error

code (indicating a timeout has occurred) is returned to it. When a message is

deposited into the queue, either the highest priority thread or the first thread to

wait for the message is given the message. Figure 11.9 shows an ISR (Interrupt

Service Routine) depositing a message into a queue. Note that the queue is

11.22

Index Interthread Communication PMcL

11 - Real-Time Operating Systems 2015

represented graphically by a double I-beam. The ''10" indicates the number of

messages that can accumulate in the queue. A "0" next to the hourglass

indicates that the thread will wait forever for a message to arrive.

ISR THREAD
POST WAIT

0

Queue

10

Interrupt

Figure 11.9 – Message queue

Kernels typically provide the message queue services listed below.

 Initialize the queue. The queue is always assumed to be empty after

initialization.

 Deposit a message into the queue (POST).

 Wait for a message to be deposited into the queue (WAIT).

 Get a message from a queue if one is present, but do not suspend the

caller if the queue is empty (ACCEPT). If the queue contains a

message, the message is extracted from the queue. A return code is used

to notify the caller about the outcome of the call.

11.23

PMcL Interrupts Index

2015 11 - Real-Time Operating Systems

11.7 Interrupts

An interrupt is a hardware mechanism used to inform the CPU that an

asynchronous event has occurred. When an interrupt is recognized, the CPU

saves all of its context (i.e., registers) and jumps to a special subroutine called

an Interrupt Service Routine, or ISR. The ISR processes the event, and upon

completion of the ISR, the program returns to:

 the background for a foreground / background system,

 the interrupted thread for a non-preemptive kernel, or

 the highest priority thread ready to run for a preemptive kernel.

Interrupts allow a microprocessor to process events when they occur. This

prevents the microprocessor from continuously polling an event to see if it has

occurred. Microprocessors allow interrupts to be ignored and recognized

through the use of two special instructions: disable interrupts and enable

interrupts, respectively. In a real-time environment, interrupts should be

disabled as little as possible. Disabling interrupts affects interrupt latency and

may cause interrupts to be missed. Processors generally allow interrupts to be

nested. This means that while servicing an interrupt, the processor will

recognize and service other (more important) interrupts, as shown in Figure

11.10.

Thread

Time

ISR1

Interrupt 1

ISR2

ISR3

Interrupt 2

Interrupt 3

Figure 11.10 – Interrupt nesting

11.24

Index Interrupts PMcL

11 - Real-Time Operating Systems 2015

11.7.1 Interrupt Latency

Probably the most important specification of a real-time kernel is the amount of

time interrupts are disabled. All real-time systems disable interrupts to

manipulate critical sections of code and reenable interrupts when the critical

section has executed. The longer interrupts are disabled, the higher the

interrupt latency. Interrupt latency is given by Eq. (11.1).

Interrupt latency

= Maximum amount of time interrupts are disabled

+ Time to start executing the first instruction in the ISR

(11.1)

11.7.2 Interrupt Response

Interrupt response is defined as the time between the reception of the interrupt

and the start of the user code that handles the interrupt. The interrupt response

time accounts for all the overhead involved in handling an interrupt.

For a foreground / background system, the user ISR code is executed

immediately. The response time is given by Eq. (11.2).

Interrupt response time

= Interrupt latency

(11.2)

For a preemptive kernel, a special function provided by the kernel needs to be

called. This function notifies the kernel that an ISR is in progress and allows

the kernel to keep track of interrupt nesting. This function is called

OS_ISREnter(). The response time to an interrupt for a preemptive kernel

is given by Eq. (11.3).

Interrupt response time

= Interrupt latency

+ Execution time of the kernel ISR entry function

(11.3)

11.25

PMcL Interrupts Index

2015 11 - Real-Time Operating Systems

A system's worst case interrupt response time is its only response time. Your

system may respond to interrupts in 50ms 99 percent of the time, but if it

responds to interrupts in 250ms the other 1 percent, you must assume a 250ms

interrupt response time.

11.7.3 Interrupt Recovery

Interrupt recovery is defined as the time required for the processor to return to

the interrupted code. Interrupt recovery in a foreground / background system

simply involves restoring the processor's context and returning to the

interrupted thread. Interrupt recovery is given by Eq. (11.4).

Interrupt recovery time

= Time to execute the return from interrupt instruction

(11.4)

For a preemptive kernel, interrupt recovery is more complex. Typically, a

function provided by the kernel is called at the end of the ISR. This function is

called OS_ISRExit() and allows the kernel to determine if all interrupts

have nested. If they have nested (i.e., a return from interrupt would return to

thread-level code), the kernel determines if a higher priority thread has been

made ready to run as a result of the ISR. If a higher priority thread is ready to

run as a result of the ISR, this thread is resumed. Note that, in this case, the

interrupted thread will resume only when it again becomes the highest priority

thread ready to run. For a preemptive kernel, interrupt recovery is given by

Eq. (11.5).

Interrupt recovery time

= Time to determine if a higher priority thread is ready

+ Time to restore the CPU's context of the highest

priority thread

+ Time to execute the return from interrupt instruction

(11.5)

11.26

Index Interrupts PMcL

11 - Real-Time Operating Systems 2015

11.7.4 Interrupt Latency, Response, and Recovery

Figure 11.11 and Figure 11.12 show the interrupt latency, response, and

recovery for a foreground / background system and a preemptive kernel,

respectively.

Background

Time

CPU context saved

User ISR code (foreground)

Interrupt RecoveryInterrupt Latency

Interrupt Request

Background

Interrupt Response

CPU context restored

Figure 11.11 – Interrupt latency, response, and recovery (foreground /

background)

11.27

PMcL Interrupts Index

2015 11 - Real-Time Operating Systems

You should note that for a preemptive kernel, the exit function either decides to

return to the interrupted thread (A) or to a higher priority thread that the ISR

has made ready to run (B). In the latter case, the execution time is slightly

longer because the kernel has to perform a context switch.

Thread 2

Thread 1

Time

CPU context saved

User ISR code

Thread 1

Interrupt Recovery

Context switch

CPU context restored

Interrupt Recovery

Interrupt Response

Interrupt Request

Kernel's ISR
entry function

Interrupt Latency
Kernel's ISR
exit function

Kernel's ISR
exit function

CPU context restored A

B

Figure 11.12 – Interrupt latency, response, and recovery (preemptive

kernel)

11.7.5 ISR Processing Time

Although ISRs should be as short as possible, there are no absolute limits on

the amount of time for an ISR. One cannot say that an ISR must always be less

than 100 ms, 500 ms, or l ms. If the ISR code is the most important code that

needs to run at any given time, it could be as long as it needs to be. In most

cases, however, the ISR should recognize the interrupt, obtain data or a status

from the interrupting device, and signal a thread to perform the actual

processing. You should also consider whether the overhead involved in

signalling a thread is more than the processing of the interrupt. Signalling a

thread from an ISR (i.e., through a semaphore, a mailbox, or a queue) requires

some processing time. If processing your interrupt requires less than the time

required to signal a thread, you should consider processing the interrupt in the

ISR itself and allowing higher priority interrupts to be recognized and serviced.

11.28

Index Interrupts PMcL

11 - Real-Time Operating Systems 2015

11.7.6 Clock Tick

A clock tick is a special interrupt that occurs periodically. This interrupt can be

viewed as the system's heartbeat. The time between interrupts is application

specific and is generally between 1 and 200 ms. The clock tick interrupt allows

a kernel to delay threads for an integral number of clock ticks and to provide

timeouts when threads are waiting for events to occur. The faster the tick rate,

the higher the overhead imposed on the system.

All kernels allow threads to be delayed for a certain number of clock ticks. The

resolution of delayed threads is one clock tick; however, this does not mean

that its accuracy is one clock tick.

Figure 11.13 through Figure 11.15 are timing diagrams showing a thread

delaying itself for one clock tick. The shaded areas indicate the execution time

for each operation being performed. Note that the time for each operation

varies to reflect typical processing, which would include loops and conditional

statements (i.e., if/else, switch, and ?:). The processing time of the Tick

ISR has been exaggerated to show that it too is subject to varying execution

times.

20 ms

Tick Interrupt

Tick ISR

All higher
priority threads

Delayed thread

Call to delay 1 tick (20 ms)
Call to delay 1 tick (20 ms)

Call to delay 1 tick (20 ms)

t1
(19 ms) t2

(17 ms)

t3
(27 ms)

Figure 11.13 – Delaying a thread for one tick (Case 1)

Case 1 (Figure 11.13) shows a situation where higher priority threads and ISRs

execute prior to the thread, which needs to delay for one tick. The thread

attempts to delay for 20ms but because of its priority, it actually executes at

varying intervals. This causes the execution of the thread to jitter.

11.29

PMcL Interrupts Index

2015 11 - Real-Time Operating Systems

20 ms

Tick Interrupt

Tick ISR

All higher
priority threads

Delayed thread

Call to delay 1 tick (20 ms)
Call to delay 1 tick (20 ms)

Call to delay 1 tick (20 ms)

t1
(6 ms) t2

(19 ms)

t3
(27 ms)

Figure 11.14 – Delaying a thread for one tick (Case 2)

Case 2 (Figure 11.14) shows a situation where the execution times of all higher

priority threads and ISRs are slightly less than one tick. If the thread delays

itself just before a clock tick, the thread will execute again almost immediately!

Because of this, if you need to delay a thread at least one clock tick, you must

specify one extra tick. In other words, if you need to delay a thread for at least

five ticks, you must specify six ticks!

20 ms

Tick Interrupt

Tick ISR

All higher
priority threads

Delayed thread

Call to delay 1 tick (20 ms) Call to delay 1 tick (20 ms)

t1
(40 ms)

t2
(26 ms)

Figure 11.15 – Delaying a thread for one tick (Case 3)

Case 3 (Figure 11.15) shows a situation in which the execution times of all

higher priority threads and ISRs extend beyond one clock tick. In this case, the

thread that tries to delay for one tick actually executes two ticks later and

misses its deadline. This might be acceptable in some applications, but in most

cases it isn't.

11.30

Index Memory Requirements PMcL

11 - Real-Time Operating Systems 2015

These situations exist with all real-time kernels. They are related to CPU

processing load and possibly incorrect system design. Here are some possible

solutions to these problems:

 Increase the clock rate of your microprocessor.

 Increase the time between tick interrupts.

 Rearrange thread priorities.

 Avoid using floating-point maths (if you must, use single precision).

 Get a compiler that performs better code optimization.

 Write time-critical code in assembly language.

 If possible, upgrade to a faster microprocessor in the same family; that

is, Cortex®-M0+ to Cortex®-M3, etc.

Regardless of what you do, jitter will always occur.

11.8 Memory Requirements

If you are designing a foreground / background system, the amount of memory

required depends solely on your application code. With a multithreading

kernel, things are quite different. To begin with, a kernel requires extra code

space (Flash). The size of the kernel depends on many factors. Depending on

the features provided by the kernel, you can expect anywhere from 1 to

100 KiB. A minimal kernel for a 32-bit CPU that provides only scheduling,

context switching, semaphore management, delays, and timeouts should

require about 1 to 3 KiB of code space.

Because each thread runs independently of the others, it must be provided with

its own stack area (RAM). As a designer, you must determine the stack

requirement of each thread as closely as possible (this is sometimes a difficult

undertaking). The stack size must not only account for the thread requirements

(local variables, function calls, etc.), it must also account for maximum

interrupt nesting (saved registers, local storage in ISRs, etc.). Depending on the

target processor and the kernel used, a separate stack can be used to handle all

interrupt-level code. This is a desirable feature because the stack requirement

11.31

PMcL Memory Requirements Index

2015 11 - Real-Time Operating Systems

for each thread can be substantially reduced. Another desirable feature is the

ability to specify the stack size of each thread on an individual basis.

Conversely, some kernels require that all thread stacks be the same size. All

kernels require extra RAM to maintain internal variables, data structures,

queues, etc. The total RAM required if the kernel does not support a separate

interrupt stack is given by Eq. (11.6).

Total RAM requirements

= Application code requirements

+ Data space (i.e., RAM) needed by the kernel

+ SUM(thread stacks + MAX(ISR nesting))

(11.6)

Unless you have large amounts of RAM to work with, you need to be careful

how you use the stack space. To reduce the amount of RAM needed in an

application, you must be careful how you use each thread's stack for:

 large arrays and structures declared locally to functions and ISRs,

 function (i.e., subroutine) nesting,

 interrupt nesting,

 library functions stack usage, and

 function calls with many arguments.

To summarize, a multithreading system requires more code space (Flash) and

data space (RAM) than a foreground / background system. The amount of extra

Flash depends only on the size of the kernel, and the amount of RAM depends

on the number of threads in your system.

11.32

Index Advantages and Disadvantages of Real-Time Operating Systems PMcL

11 - Real-Time Operating Systems 2015

11.9 Advantages and Disadvantages of Real-Time
Operating Systems

An RTOS allows real-time applications to be designed and expanded easily;

functions can be added without requiring major changes to the software. The

use of an RTOS simplifies the design process by splitting the application code

into separate threads. With a preemptive RTOS, all time-critical events are

handled as quickly and as efficiently as possible. An RTOS allows you to make

better use of your resources by providing you with valuable services, such as

semaphores, mailboxes, queues, time delays, timeouts, etc.

You should consider using a real-time kernel if your application can afford the

extra requirements: extra cost of the kernel, more ROM/RAM, and 2 to 4

percent additional CPU overhead.

