Chapter 3
Loaders and Linkers
This Chapter gives you...

Basic Loader Functions
Machine-Dependent Loader Features
Machine-Independent Loader Features
Loader Design Options
Implementation Examples

3.0 Introduction

The Source Program written in assembly language or high level language will be
converted to object program, which is in the machine language form for execution. This
conversion either from assembler or from compiler, contains translated instructions and
data values from the source program, or specifies addresses in primary memory where
these items are to be loaded for execution.

This contains the following three processes, and they are,

Loading - which allocates memory location and brings the object program into
memory for execution - (Loader)

Linking- which combines two or more separate object programs and supplies the
information needed to alow references between them - (Linker)

Relocation - which modifies the object program so that it can be loaded at an
address different from the location originally specified - (Linking L oader)

3.1 Basic Loader Functions

A loader is a system program that performs the loading function. It brings object
program into memory and starts its execution. The role of loader is as shown in the
figure 3.1. In figure 3.1 translator may be assembler/complier, which generates the object
program and later loaded to the memory by the loader for execution. In figure 3.2 the
tranglator is specifically an assembler, which generates the object loaded, which becomes
input to the loader. The figure 3.3 shows the role of both loader and linker.

Sour ce Trangator Object
Program Program L oader Object
program
ready for
execution
Memory
Figure3.1: TheRoleof Loader
Source A bler Object
Program ssem Program L oader Object
program
ready for
execution
Memory

Figure 3.2: The Role of L oader with Assembler

Object
Source Assembler i—'
vt o Program L|nker
Object
program
ready for
Executable execution
Code
L oader
Memory

Figure 3.3: TheRoleof both Loader and Linker

3.3 Type of Loaders

The different types of loaders are, absolute loader, bootstrap loader, relocating
loader (relative loader), and, direct linking loader. The following sections discuss the
functions and design of all these types of |oaders.

3.3.1 Absolute Loader

The operation of absolute loader is very simple. The object code is loaded to
specified locations in the memory. At the end the loader jumps to the specified address to
begin execution of the loaded program. The role of absolute loader is as shown in the
figure 3.3.1. The advantage of absolute loader is smple and efficient. But the
disadvantages are, the need for programmer to specify the actual address, and, difficult to
use subroutine libraries.

. 1000
Object Absolute
Program L oader
Object
program
ready for
execution
2000
Memory

Figure 3.3.1: The Role of Absolute L oader

The algorithm for this type of loader is given here. The object program and, the
object program loaded into memory by the absolute loader are aso shown. Each byte
of assembled code is given using its hexadecimal representation in character form. Easy
to read by human beings. Each byte of object code is stored as a single byte. Most
machine store object programs in a binary form, and we must be sure that our file and
device conventions do not cause some of the program bytes to be interpreted as control
characters.

Begin

read Header record

verify program name and length

read first Text record

while record type is <> ‘E’ do
begin
{if object code isin character form, convert into internal representation}
move object code to specified location in memory
read next object program record
end

jump to address specified in End record

end

HCUPY GCiDGUDGlU?ﬂ
%PU!UUU]LJ&lﬂjj&EEG]9]U]UBniH! 303&10]54820&13t!UﬂEUDlDE%@ClDB%PUlOZD
TOU]DlEliGClO?ﬁ#ﬁ?LélG&1G33ﬁf0DDuﬁS&FﬁbbLUUUJUGUUUU

TUG¢U391LU&1 HUﬁul EUEOZFSDJUZUqlLE*U%DEBlOEDBDZUS?S&QDﬂ?Z(JUBEJHEOSF
TOGEUS?ILIOlu}bﬁfUUUOPIDULDOOUﬁlf3OE020F930206ﬁ509ﬂ390t20x9”61336

Epﬂiﬂ?lﬂﬂ;ﬂ?ﬂ&iﬁtDDUQpS

QpULUDO

K (a) Object program

Memory

addrass Contents
HENTETH AAFEEALHNN HAEEXEXKXNK EEAXLMENAEL HHXXAXEXX
gara EEMNEAXNEXE XEXFEXEYN KEEXXHEXEEX XKEXEEEXEXX

E) [] k) [] L |

|] []] [] []

- L] L] L 2
OFFQ EXEMNREE MEREXMEEK XEHEAKRHH HEMEKEEX
000 PA4103348K FUAFHN1EG H6ZBI030 30F0I548
1nia 20613010 QI0DOI0ZA DCIGIS00 10200Ci0
in2g IGAB2U6] OBLG334C 0000454 46000003
1930 COOOOD s AN EM AW EXENN AR Rl A “+—COPY

[] [] [] L] []

] » » » *

L] [] [] | []
2030 FEEKREXXEX RXERAAXX® xx041030 SO1030E0
2040 J3D3020 FFDEZ050 ZB103410 20575490
PRERT Y 39ZC204%F 3BZU3FL0 I03BRA&CHE NOPIOOLID0
PR HOOAI030 EGZO74930 20645080 39DC20sy
2076 (20103638 20644C50 COUSxwx® xxEEXXXX
2080 EXEMXEXRE EZAMNEXRXXNX NERERKEE XFKKKEXXX

[] [] [] L] []

a ™ - - »

[] L] L [] []

(D)

Program oaded in memaory

3.3.2 A Simple Bootstrap L oader

When a computer is first turned on or restarted, a special type of absolute loader,
called bootstrap loader is executed. This bootstrap loads the first program to be run by
the computer -- usualy an operating system. The bootstrap itself begins at address 0. It

loads the OS starting address 0x80. No header record or control information, the object
code is consecutive bytes of memory.

The algorithm for the bootstrap loader is as follows

Begin
X=0x80 (the address of the next memory location to be loaded
L oop
A- GETC (and convert it from the ASCII character
code to the value of the hexadecimal digit)
save the value in the high-order 4 bitsof S
A- GETC
combine the value to form one byte A= (A+S)
storethe value (in A) to the address in register X
X= X+1
End

It uses a subroutine GETC, which is

GETC A- read one character
if A=0x04 then jump to 0x80
if A<48then GETC
A - A-48 (0x30)
if A<10 then return
A- A-7
return

3.4 Machine-Dependent Loader Features

Absolute loader is simple and efficient, but the scheme has potential
disadvantages One of the most disadvantage is the programmer has to specify the actual
starting address, from where the program to be loaded. This does not create difficulty, if
one program to run, but not for several programs. Further it is difficult to use subroutine
libraries efficiently.

This needs the design and implementation of a more complex loader. The loader
must provide program relocation and linking, as well as simple loading functions.

3.4.1 Relocation

The concept of program relocation is, the execution of the object program using
any part of the available and sufficient memory. The object program is loaded into
memory wherever there is room for it. The actual starting address of the object program
is not known until load time. Relocation provides the efficient sharing of the machine
with larger memory and when severa independent programs are to be run together. It
also supports the use of subroutine libraries efficiently. Loaders that allow for program
relocation are called relocating loaders or relative |loaders.

3.4.2 Methods for specifying relocation

Use of modification record and, use of relocation bit, are the methods available
for specifying relocation. In the case of modification record, a modification record M is
used in the object program to specify any relocation. In the case of use of relocation bit,
each instruction is associated with one relocation bit and, these relocation bits in a Text
record is gathered into bit masks.

Modification records are used in complex machines and is aso called Relocation
and Linkage Directory (RLD) specification. The format of the modification record (M) is
as follows. The object program with relocation by Modification records is also shown
here.

Modification record
col 1: M
col 2-7: relocation address
col 8-9: length (halfbyte)
col 10: flag (+/-)
col 11-17: segment name

H_COPY | 000000 001077

T, 000000 1DL 17202DL 69202D 48101036, ... 4B105D, 3F2FEC, 032010
T 00001D 13, 0F2016, 010003, 0F200D, 4B10105D, 3E2003, 454F46

T, 001035 | 1D, B410, B400, B440, 75101000 ..., 332008, 57C003_ B850

T 001053, 1D 3B2FEA 134000, 4F0000, F1, ... 53C003. DF2008, B850

T 00070, 07, 3B2FEF_4F0000_05

M 000007, 05+COPY

M 000014, 05+COPY

M 000027, 05+COPY

E, 000000

The relocation bit method is used for simple machines. Relocation bit is 0: no
modification is necessary, and is 1: modification is needed. This is specified in the
columns 10-12 of text record (T), the format of text record, along with relocation bits is
asfollows.

Text record
col 1. T
col 2-7: starting address
col 8-9: length (byte)
col 10-12: relocation bits
col 13-72: object code

Twelve-bit mask is used in each Text record (col:10-12 — relocation bits), since
each text record contains less than 12 words, unused words are set to 0, and, any value
that is to be modified during relocation must coincide with one of these 3-byte segments.
For absolute loader, there are no relocation bits column 10-69 contains object code. The
object program with relocation by bit mask is as shown below. Observe FFC - means all
ten words are to be modified and, EQO - means first three records are to be modified.

H_COPY | 000000 00107A

T 000000, 1E, FFC; 140033, 481039, 000036, 280030, 300015, ..., 3C0003 , ...
T 00001E, 15 EOQ, 0C0036, 481061, 080033 4C0000, ..., 000003000000

T 001039, 1E, FFC, 040030, 000030 ... 30103F_D8105D, 280030, ...

T, 001057, 0A_ 800, 100036, 4C0000, F1, 001000

T, 001061, 19, FEQ, 040030, E01079, ..., 508039, DC1079,2C0036, ...

E, 000000

3.5 Program Linking

The Goal of program linking is to resolve the problems with externa references
(EXTREF) and external definitions (EXTDEF) from different control sections.

EXTDEF (external definition) - The EXTDEF statement in a control section
names symbols, called external symbols, that are defined in this (present) control section
and may be used by other sections.

ex: EXTDEF BUFFER, BUFFEND, LENGTH
EXTDEF LISTA, ENDA

EXTREF (external reference) - The EXTREF statement names symbols used
in this (present) control section and are defined el sewhere.

ex: EXTREF RDREC, WRREC
EXTREF LISTB, ENDB, LISTC, ENDC

How to implement EXTDEF and EXTREF
The assembler must include information in the object program that will cause the
loader to insert proper values where they are required — in the form of Define record (D)
and, Refer record(R).
Definerecord
The format of the Define record (D) along with examplesis as shown here.
Col. 1 D
Cal. 2-7 Name of external symbol defined in this control section
Cal. 8-13 Relative address within this control section (hexadecimal)
Col.14-73 Repeat information in Col. 2-13 for other external symbols
Examplerecords

DLISTA 000040 ENDA 000054
DLISTB 000060 ENDB 000070

Refer record

The format of the Refer record (R) along with examplesis as shown here.

Cal. 1 R
Cal. 2-7 Name of external symbol referred to in this control section
Cal. 8-73 Name of other external reference symbols

Examplerecords

RLISTB ENDB LISTC ENDC
RLISTA ENDA LISTC ENDC
RLISTA ENDA LISTB ENDB

Here are the three programs named as PROGA, PROGB and PROGC, which are
separately assembled and each of which consists of a single control section. LISTA,
ENDA in PROGA, LISTB, ENDB in PROGB and LISTC, ENDC in PROGC are
external definitions in each of the control sections. Similarly LISTB, ENDB, LISTC,
ENDC in PROGA, LISTA, ENDA, LISTC, ENDC in PROGB, and LISTA, ENDA,
LISTB, ENDB in PROGC, are external references. These sample programs given here
are used to illustrate linking and relocation. The following figures give the sample
programs and their corresponding object programs. Observe the object programs, which
contain D and R records along with other records.

0000

0020
0023
0027

0040

0054
0054
0057
005A
005D
0060

0000

0036
003A
003D

0060

0070
0070
0073
0076
0079
007C

PROGA

REF1
REF2
REF3

LISTA

ENDA
REF4
REF5
REF6
REF/
REF8

PROGB

REF1
REF2
REF3

LISTB

ENDB
REF4
REF5
REF6
REF7
REF8

START
EXTDEF
EXTREF

EQU

EQU
WORD
WORD
WORD
WORD
WORD
END

START
EXTDEF
EXTREF

EQU

EQU

WORD
WORD
WORD
WORD
WORD
END

0
LISTA, ENDA
LISTB, ENDB, LISTC, ENDC

LISTA 03201D
LISTB+4 77100004
#ENDA-LISTA 050014
*
*
ENDA-LISTA+LISTC 000014
ENDC-LISTC-10 FFFFF6
ENDC-LISTC+LISTA-1 00003F
ENDA-LISTA-(ENDB-LISTB) 000014
LISTB-LISTA FFFFCO
REF1
0
LISTB, ENDB

LISTA, ENDA, LISTC, ENDC

LISTA 03100000

LISTB+4 772027

#ENDA-LISTA 05100000

*

*
ENDA-LISTA+LISTC 000000
ENDC-LISTC-10 FFFFF6
ENDC-LISTC+LISTA-1 FFFFFF
ENDA-LISTA-(ENDB-LISTB) FFFFFO
LISTB-LISTA 000060

10

0000

0018
001C
0020

0030

0042
0042
0045
0045
004B
004E

PROGC

REF1
REF2
REF3

LISTC

ENDC
REF4
REF5
REF6
REF/
REF8

START
EXTDEF
EXTREF

EQU

EQU
WORD
WORD
WORD
WORD
WORD
END

H PROGA 000000 000063
DLISTA 000040 ENDA 000054

RLISTB ENDB LISTC ENDC

0
LISTC, ENDC
LISTA, ENDA, LISTB, ENDB

LISTA
LISTB+4
#ENDA-LISTA

ENDA-LISTA+LISTC
ENDC-LISTC-10
ENDC-LISTC+LISTA-1
ENDA-LISTA-(ENDB-LISTB)
LISTB-LISTA

T 000020 OA 03201D 77100004 050014

:I' 000054 OF 000014 FFFF6 00003F 000014 FFFFCO

MO000024 05+LISTB
MO000054 06+LISTC
MO000057 06+ENDC
MO000057 06 -LISTC
MOOOO5A06+ENDC
MOOOO5A06 -LISTC

MOOO05A 06+PROGA

MO0OO0005D06-ENDB
MO0OO0005D06+LISTB
MO0OO006006+LISTB
M 00006006-PROGA

E000020

03100000
77100004
05100000

000030
000008
000011
000000
000000

11

H PROGB 000000 00007F
DLISTB 000060 ENDB 000070
RLISTA ENDA LISTC ENDC

T 000036 0B 03100000 772027 05100000

T 000007 OF 000000 FFFFF6 FFFFFF FFFFFO 000060
MO0O00037 05+LISTA
MOOOO3E 06+ENDA
MOOOO3E 06 -LISTA
MO000070 06 +ENDA
MO000070 06 -LISTA
MO000070 06 +LISTC
MO000073 06 +ENDC
MO000073 06 -LISTC
MO000073 06 +ENDC
MO000076 06 -LISTC
MO000076 06+LISTA
MO000079 06+ENDA
MO0O00079 06 -LISTA
MO00007C 06+PROGB
MO0O0007C 06-LISTA
E

H PROGC 000000 000051
DLISTC 000030 ENDC 000042
RLISTA ENDA LISTB ENDB

T 000018 OC 03100000 77100004 05100000

T 000042 OF 000030 000008 000011 000000 000000
MO000019 05+LISTA
MO00001D 06+LISTB
MO000021 0O6+ENDA
MO000021 06 -LISTA
MO000042 06+ENDA
MO000042 06 -LISTA
M000042 06+PROGC
MO000048 06+LISTA
MO00004B 06+ENDA
MO00004B 006-LISTA
MO00004B 06-ENDB
MO00004B 06+LI1STB
MOOQOO4E 06+L1STB
MOOOO4E 06-LISTA

E

The following figure shows these three programs as they might appear in memory
after loading and linking. PROGA has been loaded starting at address 4000, with PROGB
and PROGC immediately following.

Memory
address Contents
Qoan ERANHEEUEEY MEXAXKALEXL KATEEAHE HEXEXAXX
[] - w L} -
|] - [] L} -
3FF0 ERXEAXAEXN b A A HEARANENN EXAEENESR
ﬂ'D':ID N 4§ = ® &2 § m = m m n ok or hoh wr m B & &+ 1 & 01 * F F 1T F 1 0 B
EI":.:I.l.[::l = F 1 & 4 ® F &« 4 F 1 4 4 W * # ¥ = § p = = = m m ok & d Ok F
G20 13201077 1040C705% QO01d .4, .. rere v = —PROGA
&'DII:F d 4 0 4 & 1 & & * 4 4 F 1 ¥ % ¥ 4 " 5 §F = = = i m F & & d &
EI-UII-U: r =m & = m r u & b = &+ 4 & & 1 & + 4 &+ 4 ¥ F F B * § = 2 m = & =
AG50 et S 05412600 Q0080G40 SIO00O0S
I!I'I::.bl:.:l D[}{]ﬂsal - 4+« B * 01 4 F ¥ ¥ ¥ 4 ¥ 1 ¥ p &2 = m s m ¢k Fh R
'I"':I?U & = 3§ F = r = a h u & d = m = & d B & &+ 4 F 1 & 4 + 4 ¥ 1 ¥
il'::la‘:l 4+« B ¥ F & &+ 1 4 4 B ¥ ¥ ¥ 1 ¥ ¥ I ¥ % 5 ¥ r = & =« 4 F 4 K F &
EI-‘.:”.']U = m 4 v I & F 4 s ¢ 1 + F 4 01 4 III:IEI.D&.I:I 40??2{]2?
EEU.&U GELDDDJ.!' 4 F 4+ FTEFCP 4 Fp " = o omor - hor B A F A ER .‘—FHDGB
QUBL‘I ------- d m ¢ 0 4 F 4 - 1 ¢ 1 40 + 1 ¥ 4 F =y = & 7w
I#{:IE.I:I ¢ 1+ F 1 F 2 F ¥ @I F % & ¥ = = ®m = = F & & & 4 & 1 + F 4 F 8
[L E SR 2 O 41260 ﬂquﬂgﬁggéﬂﬁl QRO
el{]E‘U Dﬂagiiil [IO T B I B R | FF 1+ F R BT Fpr = & & = &k
G F0 R T e e - e s 310 AQEQFT 10
41040 AO0CTOS1I0 00b4.... & cursnans —PROGC
II:..I.I.I:I = p g m o mm m m wr h &= kB > & 1 + F ¥ % 1 A ¥ " = y = = =
4120 e P Nod] laan QOBEG0 40 5100006
5130 ﬂﬂﬁﬂﬂjhx EEREERNE X HEEAHXHEEX HEXTUXXEEX
140 EEXE AR A KERELKET HEEHLTAENE EETALEAME
-] - [] -
»] - |] -

13

For example, the value for REF4 in PROGA is located at address 4054 (the
beginning address of PROGA plus 0054, the relative address of REF4 within PROGA).
The following figure shows the details of how this value is computed.

Object programs Memaory contents
. (REF4) :
G00530F0001 v+ (REF)

2T LR Y] qg:d,‘jgﬁlillillviilt-
@s@f@

— e
f .—--""
/ D1STER00020 {Actual address
;f = of LISTC)

/

if Load addresses

{ PROGA 004000

k\ PROGRE 004063

.

Theinitial value from the Text record
T0000540F000014FFFFF600003F000014FFFFCO is 000014. To this is added

the address assigned to LISTC, which is 4112 (the beginning address of PROGC plus 30).
The result is 004126.

That is REF4 in PROGA is ENDA-LISTA+LISTC=4054-4040+4112=4126.

Similarly the load address for symbols LISTA: PROGA+0040=4040, LISTB:
PROGB+0060=40C3 and LISTC: PROGC+0030=4112

Keeping these details work through the details of other references and values of
these references are the same in each of the three programs.

14

3.6 Algorithm and Data structures for a Linking Loader

The algorithm for a linking loader is considerably more complicated than the
absolute loader program, which is aready given. The concept given in the program
linking section is used for developing the algorithm for linking loader. The modification
records are used for relocation so that the linking and relocation functions are performed
using the same mechanism.

Linking Loader uses two-passes logic. ESTAB (external symbol table) is the main
data structure for alinking loader.

Pass 1. Assign addresses to al external symbols
Pass 2: Perform the actual loading, relocation, and linking

ESTAB - ESTAB for the example (refer three programs PROGA PROGB and
PROGC) given is as shown below. The ESTAB has four entries in it; they are name of
the control section, the symbol appearing in the control section, its address and length of
the control section.

Control section Symbol Address Length

PROGA 4000 63
LISTA 4040
ENDA 4054

PROGB 4063 7F
LISTB 40C3
ENDB] 40D3

PROGC 40E2 51
LISTC 4112
ENDC 4124

3.6.1 Program Logic for Pass 1

Pass 1 assign addresses to al external symbols. The variables & Data structures
used during pass 1 are, PROGADDR (program load address) from OS, CSADDR

15

(control section address), CSLTH (control section length) and ESTAB. The pass 1

processes the Define Record. The algorithm for Pass 1 of Linking Loader is given below.
Fass 1:

hagin
get PROCATIDR {rom opecaling systsm
sih PSANDR To FROGADI® {for first coatral zestiond
while ot @ad of 1nput do
bagin
read next input record {Heades racord forouspotrol zection)
sat 8817H Lo sentrol segtian langlh
szegarch ESTAE 1o ¢onirol sacticn name
1f Toum] then
aet arvor {flag !duplicats sxternnl synbold
alga
anter goalrol zection name coto ESTHE with wales GialDE
while rcoord iyne [} 'E" do
bEagin
raad nexl anput record
1f record type = ' then
for cack symkal in Lhe record deo
hagin
seszron RETAR fop aymbol name
it founs them
zal crear flag {duplicate sxicreal symool)
elee
cnter oymbol inte ERTAR £ith valuoe
[LZAGDH 1 iadicated address;
and [“nrl
emd [wiile §F 'E°}
add CELTH Lo CSADDE startisy oddress Por next control sectlobg
and {while not EOF|
end |%zs5 1

3.6.2 Program Logic for Pass 2

Pass 2 of linking loader perform the actual loading, relocation, and linking. It uses
modification record and lookup the symbol in ESTAB to obtain its addres. Finaly it
uses end record of a main program to obtain transfer address, which is a starting
address needed for the execution of the program. The pass 2 process Text record and

Modification record of the object programs. The agorithm for Pass 2 of Linking Loader
isgiven below.

16

Pass 2:

begin
vel CHADDE to PROJATDR
e~ RIECALTE to PROGALLR
while nat cnd of input Qo
begin
road next input record fHarder recurd!
el CSLTH 1o control secstion length
while rocord type £} 'E' ae
begin
read mextb input rocord
if recor:d type — U7 them
begin
fif pkject code is 1n charvasler form, sunvert
intg inloernal reprosentationd
mova shjcet ende from rvecord to Tocalizn
(CHANDR b speuilied addeess)

end {1f ‘T
glss 1f rcecord tuwpe - 'MW them
begdin

zaarch ESTAB tar rmodifylng symhol oAame
it found then .
add or snbtract syebol walus il leostion
- iCGADNTDR + speonilisd address]
Alea .
et errer [lag [wndeliced external symbal]
end if ‘W
ena {while {} 'E'} .
1f an address 15 specitied bin Lad cecord) than.
sot EXECANCE to (GSADDR | spacificd address)
add CSITH ta CEADLDH
amd [whilz nnt EGF} .))
iqmp to lopation giver by EXECANNR fto thii_ﬂxecgtiqg,ﬂ' paded progral

3.6.3 Improve Efficiency, How?

The question here is can we improve the efficiency of the linking loader. Also
observe that, even though we have defined Refer record (R), we haven’t made use of it.
The efficiency can be improved by the use of local searching instead of multiple searches
of ESTAB for the same symbol. For implementing this we assign a reference number to
each external symbol in the Refer record. Then this reference number is used in
Modification records instead of external symbols. 01 is assigned to control section name,
and other numbers for external reference symbols.

The object programs for PROGA, PROGB and PROGC are shown below, with
above modification to Refer record (Observe R records).

17

HERGGA LO0GOO0{A0063
HlihTﬂ DﬂﬂGﬂDEhﬂﬂ DANGSS
REiII?TE GILNDE UﬁLIETL GEE%DL

]
]
m
=

BOGO2004032020D77 1000040500] &

iUﬂUUE#U}UdLUIﬁFPP’FEUDUUJLUUGUL&PFFFCG
FDHLQE&U5+GP
Fﬂﬂﬂﬂjﬁﬂh+ﬂ4
HLULUj?Uh+Uj
MOGULOS F0a-Ud

HFROGE pROGDOR0OQ07F
g;lsTB HOOCGEQENDH pﬂuﬂ?u
ROZLISTA ﬂaﬁnna JHALTETC NSENDC

UUUUH%PEPHlUUUUQ?fEUEﬂUElUUUUU

#®. 3 mN

TDUDG?”UFUUDHQQEEEFtEEtFFFbEfEbEDDGDQﬁD
MUBUDD3TO5+02
MO 3ED5+03
MPDO3IEDS-02
MPOODT 06403
HPDUU?Q@B -2
MDOGO7 006404
MDOCU? 306405
M00007306-0%

OUUD7E06+DS
Ebumu?ﬁnﬁ 0%
MPOOUT 606+0
MOUUDT 06D
MO000T 9061

i

g mim

ﬂpﬂﬂﬂ?qp'
mpnuw?qy

[

18

HNEEEII'.-C Latdonanndsl
ISTC PU0O0IGENDC OOOQ42
ROJLISTA OJENDA J4LISTB OSENDE

*
&

TOCO08HGH31000007710000405100000

TO00C0420F000030G0000800001 LO0O000C000000
MOGOO1505+02
gpuﬂu1n95+u4
MOOO02 105403
KOOO02105=02
HOOO04 206403
MOOO04206-02
Hﬂoﬂﬂnzaa+01
Hﬂﬂﬂﬂﬁ&ﬂ6+02
Hﬂﬁﬂﬂﬁﬁpﬁ+03
MOOO04E06-02
Hﬂﬂﬂﬂﬁﬁpﬁrﬁﬁ
HUUUU&BQ&-HM
HGGUGﬁEﬁ6+Dﬁ
HﬂﬂﬂﬁﬁEﬁﬁ 0z
K

Symbol and Addresses in PROGA, PROGB and PROGC are as shown below.
These are the entries of ESTAB. The main advantage of reference number mechanism is
that it avoids multiple searches of ESTAB for the same symbol during the loading of a
control section

Ref No. Symbol Address
1 PROGA 4000
2 LISTB 40C3
3 ENDB 40D3
4 LISTC 4112
5 ENDC 4124

19

Ref No. Symbol Address
1 PROGB 4063
2 LISTA 4040
3 ENDA 4054
4 LISTC 4112
S ENDC 4124

Ref No. Symbol Address

1 PROGC 4063
2 LISTA 4040
3 ENDA 4054
4 LISTB 40C3
5 ENDB 40D3

3.7 Machine-independent L oader Features

Here we discuss some loader features that are not directly related to machine
architecture and design. Automatic Library Search and Loader Options are such
Machine-independent Loader Features.

3.7.1 Automatic Library Search

This feature allows a programmer to use standard subroutines without explicitly
including them in the program to be loaded. The routines are automatically retrieved from
a library as they are needed during linking. This allows programmer to use subroutines
from one or more libraries. The subroutines called by the program being loaded are
automatically fetched from the library, linked with the main program and loaded. The
loader searches the library or libraries specified for routines that contain the definitions of
these symbols in the main program.

20

3.7.2 Loader Options

Loader options allow the user to specify options that modify the standard
processing. The options may be specified in three different ways. They are, specified
using a command language, specified as a part of job control language that is processed
by the operating system, and an be specified using loader control statements in the source
program.

Here are the some examples of how option can be specified.

INCLUDE program-name (library-name) - read the designated object program
from alibrary

DELETE csect-name — delete the named control section from the set pf programs
being loaded

CHANGE namel, name2 - externa symbol namel to be changed to name2
wherever it appearsin the object programs

LIBRARY MYLIB - search MYLIB library before standard libraries

NOCALL STDDEV, PLOT, CORREL - no loading and linking of unneeded
routines

Here is one more example giving, how commands can be specified as a part of
object file, and the respective changes are carried out by the loader.

LIBRARY UTLIB
INCLUDE READ (UTLIB)
INCLUDE WRITE (UTLIB)
DELETE RDREC, WRREC
CHANGE RDREC, READ
CHANGE WRREC, WRITE
NOCALL SQRT, PLOT

The commands are, use UTLIB (say utility library), include READ and WRITE
control sections from the library, delete the control sections RDREC and WRREC from
the load, the change command causes al external references to the symbol RDREC to be
changed to the symbol READ, similarly references to WRREC is changed to WRITE,
finally, no call to the functions SQRT, PLOT, if they are used in the program.

3.8 Loader Design Options
There are some common alternatives for organizing the loading functions,
including relocation and linking. Linking Loaders — Perform all linking and relocation at

load time. The Other Alternatives are Linkage editors, which perform linking prior to
load time and, Dynamic linking, in which linking function is performed at execution time

21

3.8.1 Linking Loaders

Object
Program(s)

AN
N |

Linking loader

A 4

Library

N '

Memory

The above diagram shows the processing of an object program using Linking
Loader. The source program is first assembled or compiled, producing an object program.
A linking loader performs all linking and loading operations, and loads the program into
memory for execution.

3.8.2 Linkage Editors

The figure below shows the processing of an object program using Linkage editor.
A linkage editor produces alinked version of the program — often called aload module or
an executable image — which is written to afile or library for later execution. The linked
program produced is generally in a form that is suitable for processing by a relocating
loader.

Some useful functions of Linkage editor are, an absolute object program can be
created, if starting address is already known. New versions of the library can be included
without changing the source program. Linkage editors can aso be used to build packages
of subroutines or other control sections that are generally used together. Linkage editors
often allow the user to specify that external references are not to be resolved by automatic
library search — linking will be done later by linking loader — linkage editor + linking
loader — savings in space

22

Object

Program(s)
N
v \ 4
Library —* Linkage Editor

N

Linked
program

A 4

Relocating loader

Memory

3.8.3 Dynamic Linking

The scheme that postpones the linking functions until execution. A subroutine is
loaded and linked to the rest of the program when it is first called — usually called
dynamic linking, dynamic loading or load on call. The advantages of dynamic linking are,
it allow severa executing programs to share one copy of a subroutine or library. In an
object oriented system, dynamic linking makes it possible for one object to be shared by
several programs. Dynamic linking provides the ability to load the routines only when
(and if) they are needed. The actual loading and linking can be accomplished using
operating system service request.

23

3.8.4 Bootstrap Loaders

If the question, how is the loader itself loaded into the memory ? is asked, then the
answer is, when computer is started — with no program in memory, a program present in
ROM (absolute address) can be made executed — may be OS itself or A Bootstrap loader,
which in turn loads OS and prepares it for execution. The first record (or records) is
generdly referred to as a bootstrap loader — makes the OS to be loaded. Such aloader is
added to the beginning of all object programs that are to be loaded into an empty and idle
system.

3.9 Implementation Examples

This section contains brief description of loaders and linkers for actual computers.
They are, MS-DOS Linker - Pentium architecture, SunOS Linkers - SPARC architecture,
and, Cray MPP Linkers — T3E architecture.

3.9.1 MS-DOS Linker

This explains some of the features of Microsoft MS-DOS linker, which is alinker
for Pentium and other x86 systems. Most MS-DOS compilers and assemblers (MASM)
produce object modules, and they are stored in .OBJ files. MS-DOS LINK is a linkage
editor that combines one or more object modules to produce a complete executable
program - .EXE file; thisfileis later executed for results.

The following tableillustrates the typical MS-DOS object module
Record Types Description
THEADR Translator Header

TYPDEF,PUBDEF, EXTDEF External symbols and references
LNAMES, SEGDEF, GRPDEF Segment definition and grouping

LEDATA, LIDATA Trandated instructions and data
FIXUPP Relocation and linking information
MODEND End of object module

THEADR specifies the name of the object module. MODEND specifies the end
of the module. PUBDEF contains list of the external symbols (called public names).
EXTDEF contains list of external symbols referred in this module, but defined elsewhere.
TYPDEF the data types are defined here. SEGDEF describes segments in the object
module (includes name, length, and alignment). GRPDEF includes how segments are
combined into groups. LNAMES contains all segment and class names. LEDATA
contains tranglated instructions and data. LIDATA has above in repeating pattern. Finally,
FIXUPP is used to resolve external references.

24

3.9.2 SunOS Linkers

SunOS Linkers are developed for SPARC systems. SunOS provides two different
linkers — link-editor and run-time linker.

Link-editor is invoked in the process of assembling or compiling a program —
produces a single output module — one of the following types

A relocatable object module — suitable for further link-editing
A static executable — with all symbolic references bound and ready to run

A dynamic executable — in which some symbolic references may need to be bound at run
time

A shared object — which provides services that can be, bound at run time to one ore more
dynamic executables

An object module contains one or more sections — representing instructions and
data area from the source program, relocation and linking information, external symbol
table.

Run-time linker uses dynamic linking approach. Run-time linker binds dynamic
executables and shared objects at execution time. Performs relocation and linking
operations to prepare the program for execution.

3.9.3 Cray MPP Linker

Cray MPP (massively paralel processing) Linker is developed for Cray T3E
systems. A T3E system contains large number of parallel processing elements (PES) —
Each PE has local memory and has access to remote memory (memory of other PES). The
processing is divided among PEs - contains shared data and private data. The loaded
program gets copy of the executable code, its private data and its portion of the shared
data The MPP linker organizes blocks containing executable code, private data and
shared data. The linker then writes an executable file that contains the relocated and
linked blocks. The executable file aso specifies the number of PES required and other
control information. The linker can create an executable file that is targeted for a fixed
number of PEs, or one that allows the partition size to be chosen at run time. Latter type
is caled plastic executable.

25

