
Chapter 4

Editors and Debugging Systems

This Chapter gives you…

 Text editors
 Interactive Debugging Systems

4.0 Introduction

An Interactive text editor has become an important part of almost any computing
environment. Text editor acts as a primary interface to the computer for all type of
“knowledge workers” as they compose, organize, study, and manipulate computer-based
information.

An interactive debugging system provides programmers with facilities that aid in
testing and debugging of programs. Many such systems are available during these days.
Our discussion is broad in scope, giving the overview of interactive debugging systems –
not specific to any particular existing system.

4.1 Text Editors

An Interactive text editor has become an important part of almost any computing
environment. Text editor acts as a primary interface to the computer for all type of
“knowledge workers” as they compose, organize, study, and manipulate computer-based
information.

A text editor allows you to edit a text file (create, modify etc…). For example the
Interactive text editors on Windows OS - Notepad, WordPad, Microsoft Word, and text
editors on UNIX OS - vi, emacs, jed, pico.

Normally, the common editing features associated with text editors are, Moving
the cursor, Deleting, Replacing, Pasting, Searching, Searching and replacing, Saving and
loading, and, Miscellaneous(e.g. quitting).

4.1.1 Overview of the editing process

An interactive editor is a computer program that allows a user to create and revise
a target document. Document includes objects such as computer diagrams, text, equations
tables, diagrams, line art, and photographs. Here we restrict to text editors, where
character strings are the primary elements of the target text.

Document-editing process in an interactive user-computer dialogue has four tasks

- Select the part of the target document to be viewed and manipulated
- Determine how to format this view on-line and how to display it
- Specify and execute operations that modify the target document
- Update the view appropriately

The above task involves traveling, filtering and formatting. Editing phase involves
– insert, delete, replace, move, copy, cut, paste, etc…

- Traveling – locate the area of interest
- Filtering - extracting the relevant subset
- Formatting – visible representation on a display screen

There are two types of editors. Manuscript-oriented editor and program oriented
editors. Manuscript-oriented editor is associated with characters, words, lines, sentences
and paragraphs. Program-oriented editors are associated with identifiers, keywords,
statements. User wish – what he wants – formatted.

4.1.2 User Interface

Conceptual model of the editing system provides an easily understood abstraction
of the target document and its elements. For example, Line editors – simulated the
world of the key punch – 80 characters, single line or an integral number of lines, Screen
editors – Document is represented as a quarter-plane of text lines, unbounded both down
and to the right.

The user interface is concerned with, the input devices, the output devices and,
the interaction language. The input devices are used to enter elements of text being edited,
to enter commands. The output devices, lets the user view the elements being edited and
the results of the editing operations and, the interaction language provides
communication with the editor.

Input Devices are divided into three categories, text devices, button devices and,
locator devices. Text Devices are keyboard. Button Devices are special function keys,
symbols on the screen. Locator Devices are mouse, data tablet. There are voice input
devices which translates spoken words to their textual equivalents.

Output Devices are Teletypewriters (first output devices), Glass teletypes
(Cathode ray tube (CRT) technology), Advanced CRT terminals, TFT Monitors
(Wysiwyg) and Printers (Hard-copy).

The interaction language could be, typing oriented or text command oriented and
menu-oriented user interface. Typing oriented or text command oriented interaction was
with oldest editors, in the form of use of commands, use of function keys, control keys
etc.,

Menu-oriented user interface has menu with a multiple choice set of text strings
or icons. Display area for text is limited. Menus can be turned on or off.

4.1.3 Editor Structure

Most text editors have a structure similar to that shown in the following figure.
That is most text editors have a structure similar to shown in the figure regardless of
features and the computers

Command language Processor accepts command, uses semantic routines –
performs functions such as editing and viewing. The semantic routines involve traveling,
editing, viewing and display functions.

Editing operations are specified explicitly by the user and display operations are
specified implicitly by the editor. Traveling and viewing operations may be invoked
either explicitly by the user or implicitly by the editing operations.

In editing a document, the start of the area to be edited is determined by the
current editing pointer maintained by the editing component. Editing component is a
collection of modules dealing with editing tasks. Current editing pointer can be set or
reset due to next paragraph, next screen, cut paragraph, paste paragraph etc..,.

Editing
component

Traveling
component

Viewing
component

Command
language
processor

Editing
filter

Viewing
filterViewing

buffer

Main
memory

File
system

Display
component

Output
devices

input

Typical Editor Structure

Paging
Routines

Control

Data

Editing
buffer

When editing command is issued, editing component invokes the editing filter –
generates a new editing buffer – contains part of the document to be edited from current
editing pointer. Filtering and editing may be interleaved, with no explicit editor buffer
being created.

In viewing a document, the start of the area to be viewed is determined by the
current viewing pointer maintained by the viewing component. Viewing component is a
collection of modules responsible for determining the next view. Current viewing pointer
can be set or reset as a result of previous editing operation.

When display needs to be updated, viewing component invokes the viewing filter
– generates a new viewing buffer – contains part of the document to be viewed from
current viewing pointer. In case of line editors – viewing buffer may contain the current
line, Screen editors - viewing buffer contains a rectangular cutout of the quarter plane of
the text. Viewing buffer is then passed to the display component of the editor, which
produces a display by mapping the buffer to a rectangular subset of the screen – called a
window. The editing and viewing buffers may be identical or may be completely disjoint.
Identical – user edits the text directly on the screen. Disjoint – Find and Replace (For
example, there are 150 lines of text, user is in 100th line, decides to change all
occurrences of ‘text editor’ with ‘editor’). The editing and viewing buffers can also be
partially overlap, or one may be completely contained in the other. Windows typically
cover entire screen or a rectangular portion of it. May show different portions of the same
file or portions of different file. Inter-file editing operations are possible.

The components of the editor deal with a user document on two levels: In main
memory and in the disk file system. Loading an entire document into main memory may
be infeasible – only part is loaded – demand paging is used – uses editor paging routines.
Documents may not be stored sequentially as a string of characters. Uses separate editor
data structure that allows addition, deletion, and modification with a minimum of I/O and
character movement.

4.1.4 Types of editors based on computing environment

Editors function in three basic types of computing environments: Time sharing,
Stand-alone, and Distributed. Each type of environment imposes some constraints on the
design of an editor.

In time sharing environment, editor must function swiftly within the context of
the load on the computer’s processor, memory and I/O devices. In stand-alone
environment, editors on stand-alone system are built with all the functions to carry out
editing and viewing operations – The help of the OS may also be taken to carry out some
tasks like demand paging. In distributed environment, editor has both functions of stand-
alone editor, to run independently on each user’s machine and like a time sharing editor,
contend for shared resources such as files.

4.2 Interactive Debugging Systems

An interactive debugging system provides programmers with facilities that aid in
testing and debugging of programs. Many such systems are available during these days.
Our discussion is broad in scope, giving the overview of interactive debugging systems –
not specific to any particular existing system.

Here we discuss

- Introducing important functions and capabilities of IDS
- Relationship of IDS to other parts of the system
- The nature of the user interface for IDS

4.2.1 Debugging Functions and Capabilities

One important requirement of any IDS is the observation and control of the flow
of program execution. Setting break points – execution is suspended, use debugging
commands to analyze the progress of the program, résumé execution of the program.
Setting some conditional expressions, evaluated during the debugging session, program
execution is suspended, when conditions are met, analysis is made, later execution is
resumed.

A Debugging system should also provide functions such as tracing and traceback.
Tracing can be used to track the flow of execution logic and data modifications. The
control flow can be traced at different levels of detail – procedure, branch, individual
instruction, and so on… Traceback can show the path by which the current statement in
the program was reached. It can also show which statements have modified a given
variable or parameter. The statements are displayed rather than as hexadecimal
displacements

4.2.2 Program-Display capabilities

A debugger should have good program-display capabilities. Program being
debugged should be displayed completely with statement numbers. The program may be
displayed as originally written or with macro expansion. Keeping track of any changes
made to the programs during the debugging session. Support for symbolically displaying
or modifying the contents of any of the variables and constants in the program. Resume
execution – after these changes.

To provide these functions, a debugger should consider the language in which the
program being debugged is written. A single debugger – many programming languages –
language independent. The debugger - a specific programming language – language
dependent. The debugger must be sensitive to the specific language being debugged.

The context being used has many different effects on the debugging interaction.
The statements are different depending on the language

Cobol - MOVE 6.5 TO X
Fortran - X = 6.5
C - X = 6.5

Examples of assignment statements

Similarly, the condition that X be unequal to Z may be expressed as

Cobol - IF X NOT EQUAL TO Z
Fortran - IF (X.NE.Z)
C - IF (X <> Z)

Similar differences exist with respect to the form of statement labels, keywords and so
on…

The notation used to specify certain debugging functions varies according to the
language of the program being debugged. Sometimes the language translator itself has
debugger interface modules that can respond to the request for debugging by the user.
The source code may be displayed by the debugger in the standard form or as specified
by the user or translator.

It is also important that a debugging system be able to deal with optimized code.
Many optimizations like

- Invariant expressions can be removed from loops
- Separate loops can be combined into a single loop
- Redundant expression may be eliminated
- Elimination of unnecessary branch instructions

Leads to rearrangement of segments of code in the program. All these
optimizations create problems for the debugger, and should be handled carefully.

4.2.3 Relationship with Other Parts of the System

The important requirement for an interactive debugger is that it always be
available. Must appear as part of the run-time environment and an integral part of the
system. When an error is discovered, immediate debugging must be possible. The
debugger must communicate and cooperate with other operating system components such
as interactive subsystems.

Debugging is more important at production time than it is at application-
development time. When an application fails during a production run, work dependent on
that application stops. The debugger must also exist in a way that is consistent with the
security and integrity components of the system. The debugger must coordinate its
activities with those of existing and future language compilers and interpreters.

4.2.4 User-Interface Criteria

Debugging systems should be simple in its organization and familiar in its
language, closely reflect common user tasks. The simple organization contribute greatly
to ease of training and ease of use. The user interaction should make use of full-screen
displays and windowing-systems as much as possible. With menus and full-screen editors,
the user has far less information to enter and remember. There should be complete
functional equivalence between commands and menus – user where unable to use full-
screen IDSs may use commands. The command language should have a clear, logical and
simple syntax; command formats should be as flexible as possible. Any good IDSs
should have an on-line HELP facility. HELP should be accessible from any state of the
debugging session.
