• GTU Syllabus

Tutorial No.	Name Of Topic	Page No.
Unit 1	Complex Number and Functions	1-19
Unit 2	Complex Integration	20-24
Unit 3	Power Series	25-31
Unit 4	Application Of Contour Integration	32-33
Unit 5	Conformal Mapping and Its Application	34-36
Unit 6	Interpolation	37-56
Unit 7	Numerical Integration	57-64
Unit 8	Linear Algebraic Equation	65-69
Unit 9	Roots Of Non-Linear Equation	70-77
Unit 10	Iterative Methods For Eigen Value	78-79
Unit 11	Ordinary Differential Equation	80-88

GTU Papers

•	June-2010
•	Nonember-2010
•	June-2011
•	Nonember-2011
•	May-2012
•	December-2012
•	June-2013
•	December-2013
•	June-2014
•	December-2014
•	May-2015
•	May-2015 [2141905]
•	December-2015

• December -2015 [2141905]

GUJARAT TECHNOLOGICAL UNIVERSITY

AUTOMOBILE ENGINEERING (02), INDUSTRIAL ENGINEERING (15) & MECHANICAL ENGINEERING (19) COMPLEX VARIABLES AND NUMERICAL METHODS SUBJECT CODE: 2141905 B.E. 4th SEMESTER

Type of course: Engineering Mathematics

Prerequisite: As a pre-requisite to this course students are required to have a reasonable mastery over multivariable calculus, differential equations and Linear algebra

Rationale:

Mathematics is a language of Science and Engineering.

Teaching and Examination Scheme:

Tea	ching Scl	heme	Credits		Examination Marks					Total
L	Т	Р	С	Theory Marks Practical Ma			Aarks	Marks		
				ESE	PA	A (M)	PA	A (V)	PA	
				(E)	PA	ALA	ESE	OEP	(I)	
3	2	0	5	70	20	10	30	0	20	150

Content:

Sr. No.	Content	Total	%
		Hrs	Weightage
1	Complex Numbers and Functions:	10	24
	Exponential, Trigonometric, De Moivre's Theorem, Roots of a complex		
	number ,Hyperbolic functions and their properties, Multi-valued function		
	and its branches: Logarithmic function and Complex Exponent function		
	Limit ,Continuity and Differentiability of complex function, Analytic		
	functions, Cauchy-Riemann Equations, Necessary and Sufficient		
	condition for analyticity, Properties of Analytic functions, Laplace		
	Equation, Harmonic Functions, Harmonic Conjugate functions and their Engineering Applications		
2	Complex Integration:	04	10
2	Curves, Line Integral(contour integral) and its properties, Cauchy-	04	10
	Goursat Theorem, Cauchy Integral Formula, Liouville Theorem (without		
	proof), Maximum Modulus Theorems(without proof)		
3	Power Series:	05	12
	Convergence(Ordinary, Uniform, Absolute) of power series, Taylor and		
	Laurent Theorems (without proof), Laurent series expansions, zeros of		
	analytic functions, Singularities of analytic functions and their		
	classification		
	Residues: Residue Theorem, Rouche's Theorem (without proof)		
4	Applications of Contour Integration:	02	5
	Evaluation of various types of definite real integrals using contour		

	interaction method		
	integration method		_
5	Conformal Mapping and its Applications:	03	7
	Conformal and Isogonal mappings , Translation, Rotation &		
	Magnification, Inversion, Mobius(Bilinear),		
	Schwarz-Christoffel transformations		
6	Interpolation: Finite Differences, Forward, Backward and Central	04	10
	operators,		
	Interpolation by polynomials: Newton's forward, Backward interpolation		
	formulae, Newton's divided Gauss & Stirling's central difference		
	formulae and Lagrange's interpolation formulae for unequal intervals		
7	Numerical Integration:	03	7
	Newton-Cotes formula, Trapezoidal and Simpson's formulae, error		
	formulae, Gaussian quadrature formulae		
8	Solution of a System of Linear Equations: Gauss elimination, partial	03	7
	pivoting, Gauss-Jacobi method and Gauss-Seidel method		
9	Roots of Algebraic and Transcendental Equations :	03	7
	Bisection, false position, Secant and Newton-Raphson		
	methods, Rate of convergence		
10	Eigen values by Power and Jacobi methods	02	4
11	Numerical solution of Ordinary Differential Equations:	03	7
	Euler and Runge-Kutta methods		

Suggested Specification table with Marks (Theory):

Distribution of Theory Marks					
R Level	U Level	A Level	N Level	E Level	
10%	15%	20%	20%	35%	

Legends: R: Remembrance; U: Understanding; A: Application, N: Analyze and E: Evaluate and above Levels (Revised Bloom's Taxonomy)

Note: This specification table shall be treated as a general guideline for students and teachers. The actual distribution of marks in the question paper may vary slightly from above table

Reference Books:

- 1. R. V. Churchill and J. W. Brown, Complex Variables and Applications (7th Edition), McGraw-Hill (2003)
- 2. J. M. Howie, Complex Analysis, Springer-Verlag(2004)
- 3. M. J. Ablowitz and A.S. Fokas, Complex Variables-Introduction and Applications, Cambridge University Press, 1998 (Indian Edition)
- 4. E. Kreyszig, Advanced Engineering Mathematics(8th Edition), John Wiley (1999)
- 5. S. D. Conte and Carl de Boor, Elementary Numerical Analysis-An Algorithmic Approach (3rd Edition), McGraw-Hill, 1980
- 6. C.E. Froberg, Introduction to Numerical Analysis (2nd Edition), Addison-Wesley, 1981
- 7. Gerald C. F. and Wheatley, P.O., Applied Numerical Analysis (Fifth Edition), Addison-Wesley, Singapore, 1998.
- 8. Chapra S.C, Canale, R P, Numerical Methods for Engineers, Tata McGraw Hill, 2003

Course Outcome:

After learning the course the students should be able to:

- evaluate exponential, trigonometric and hyperbolic functions of a complex number
- define continuity, differentiability, analyticity of a function using limits. Determine where a function is continuous/discontinuous, differentiable/non-differentiable, analytic/not analytic or entire/not entire.
- determine whether a real-valued function is harmonic or not. Find the harmonic conjugate of a harmonic function.
- o understand the properties of Analytic function.
- evaluate a contour integral with an integrand which have singularities lying inside or outside the simple closed contour.
- o recognize and apply the Cauchy's integral formula and the generalized Cauchy's integral formula.
- o classify zeros and singularities of an analytic function.
- o find the Laurent series of a rational function.
- write a trigonometric integral over $[0, 2\pi]$ as a contour integral and evaluate using the residue theorem.
- o distinguish between conformal and non conformal mappings.
- o find fixed and critical point of Bilinear Transformation.
- o calculate Finite Differences of tabulated data.
- o find an approximate solution of algebraic equations using appropriate method.
- find an eigen value using appropriate iterative method.
- o find an approximate solution of Ordinary Differential Equations using appropriate iterative method.

List of Open Source Software/learning website:

http://ocw.mit.edu/resources/res-18-008-calculus-revisited-complex-variables-differential-equationsand-linear-algebra-fall-2011/part-i/ http://nptel.ac.in/courses/111105038/ http://nptel.ac.in/courses/111104030/ http://nptel.ac.in/courses/111107063/ http://nptel.ac.in/courses/111101003/

ACTIVE LEARNING ASSIGNMENTS: Preparation of power-point slides, which include videos, animations, pictures, graphics for better understanding theory and practical work – The faculty will allocate chapters/ parts of chapters to groups of students so that the entire syllabus to be covered. The power-point slides should be put up on the web-site of the College/ Institute, along with the names of the students of the group, the name of the faculty, Department and College on the first slide. The best three works should submit to GTU.

Complex Number

A number z = x + iy is called a complex number, where $x, y \in \mathbb{R}$ and $i = \sqrt{-1}$.

- \checkmark x is called the real part of z and is denoted by Re(z).
- \checkmark y is called the imaginary part of z and is denoted by Im(z).

Conjugate of a Complex Number

Conjugate of a complex number z = x + iy is denoted by \overline{z} and is defined by

 $\bar{z} = x - iy.$

Two complex number x + iy and x - iy are said to be complex conjugate of each other.

Arithmetic Operations Of Complex Numbers

Let $z_1 = x_1 + iy_1$ and $z_2 = x_2 + iy_2$ be two complex numbers then

Addition

$$z_1 + z_2 = (x_1 + iy_1) + (x_2 + iy_2) = (x_1 + x_2) + i(y_1 + y_2)$$

Subtraction

$$z_1 - z_2 = (x_1 + iy_1) - (x_2 + iy_2) = (x_1 - x_2) + i(y_1 - y_2)$$

Multiplication

$$z_1 \cdot z_2 = (x_1 + iy_1) \cdot (x_2 + iy_2) = (x_1x_2 - y_1y_2) + i(x_1y_2 + x_2y_1)$$

Division

$$\frac{z_1}{z_2} = \frac{x_1 + iy_1}{x_2 + iy_2} \times \frac{x_2 - iy_2}{x_2 - iy_2} = \frac{(x_1x_2 + y_1y_2) + i(x_2y_1 - x_1y_2)}{x_2^2 + y_2^2}$$

Properties

Let z_1 and z_2 be two complex numbers then

 $\checkmark \quad \overline{(\overline{z_1})} = z_1 \qquad \qquad \checkmark \quad \overline{\left(\frac{z_1}{z_2}\right)} = \frac{\overline{z_1}}{\overline{z_2}}; z_2 \neq 0$ $\checkmark \quad |z_1| = |\overline{z_1}| \qquad \qquad \checkmark \quad \frac{z_1 + \overline{z_1}}{2} = Re(z_1)$ $\checkmark \quad \overline{z_1 \pm z_2} = \overline{z_1} \pm \overline{z_2} \qquad \qquad \checkmark \quad \frac{z_1 - \overline{z_1}}{2i} = Im(z_1)$ $\checkmark \quad \overline{z_1 \cdot z_2} = \overline{z_1} \cdot \overline{z_2} \qquad \qquad \checkmark \quad z_1 \cdot \overline{z_1} = x^2 + y^2 = |z|^2$

Geometrical Representation Of Complex Number

Let *XOY* be a complex plane which is also known as Argand Plane, where \overrightarrow{OX} and \overrightarrow{OY} are called Real axis and Imaginary axis respectively.

The ordered pair P(x, y) represents the complex number z = x + iy.

 \overline{OP} represents the distance between complex numbers *P* and *O*, it is called **modulus** of *z* and denoted by |z|.

i. e.
$$|\mathbf{z}| = \mathbf{r} = \sqrt{\mathbf{x}^2 + \mathbf{y}^2} = \sqrt{\mathbf{z}.\,\overline{\mathbf{z}}}$$

Let \overline{OP} makes an angle θ with positive real axis, it is called argument of *z*.

i. e. $\theta = \tan^{-1}\left(\frac{y}{x}\right)$

Rules To Determine Argument of a non-zero Complex Number

$$\checkmark$$
 If $x > 0 \& y > 0$, $\theta = tan^{-1}\left(\frac{y}{x}\right)$

- ✓ If x > 0 & y < 0, $\theta = -tan^{-1} \left| \frac{y}{x} \right|$
- $\checkmark \quad \text{If } x < 0 \ \& \ y > 0 \ , \ \theta = \pi tan^{-1} \left| \frac{y}{x} \right|$

✓ If
$$x < 0 \& y < 0$$
, $\theta = -\pi + tan^{-1} \left| \frac{y}{x} \right|$

Notes

✓ If $-\pi < \theta \le \pi$, then argument of *z* is called "PRINCIPAL ARGUMENT" of *z*. It is denoted by Arg(z).

$$i.e.Arg(z) = tan^{-1}\left(\frac{y}{x}\right)$$

- ✓ Arg(z) is a Single-Valued Function.
- ✓ The "GENERAL ARGUMENT" of argument of z is denoted by "arg(z)".
- ✓ Relation between "arg(z)" and "Arg(z)".

$$arg(z) = Arg(z) + 2k\pi$$
; $k = 0 \pm 1, \pm 2, ...$

- \checkmark arg(z) is a Multi-Valued Function.
- ✓ For z = 0 = 0 + i0, argument is not defined.

Absolute value or Modulus of a complex number

If z = x + iy is a given complex number then absolute value of modulus of z is denoted by |z| and is defined by $\sqrt{x^2 + y^2}$

i. e.
$$|z| = \sqrt{x^2 + y^2} = \sqrt{z \cdot \overline{z}}$$

Properties

- $\checkmark |z_1 + z_2| \le |z_1| + |z_2|$
- $\checkmark \qquad |z_1 z_2| \ge ||z_1| |z_2||$

 $\checkmark \qquad |z_1 \cdot z_2| = |z_1| \cdot |z_2|$ $\checkmark \qquad \left| \frac{z_1}{z_2} \right| = \frac{|z_1|}{|z_2|}$ $\checkmark \qquad z \cdot \overline{z} = |z|^2$

Polar Representation of a Complex Number

Let z = x + iy be a complex number.

Let $x = \cos \theta$ and $y = \sin \theta$; $\theta \in (-\pi, \pi]$.

Now, z = x + iy

 $= r\cos\theta + i r\sin\theta = r(\cos\theta + i \sin\theta)$

Thus, $z = r(\cos \theta + i \sin \theta)$ is called Polar representation of a complex number.

Where, $r = \sqrt{x^2 + y^2}$ and $\theta = \tan^{-1}\left(\frac{y}{x}\right)$

Now, $z = u(r, \theta) + i v(r, \theta) = r(\cos \theta + i \sin \theta)$

$$\Rightarrow$$
 z = u(r, θ) + i v(r, θ) = r cos θ + i r sin θ

Thus, $\operatorname{Re}(z) = u(r, \theta) = r \cos \theta \& \operatorname{Im}(z) = v(r, \theta) = r \sin \theta$

Exponential Representation Of a Complex Number

By Polar representation,

 $z = r(\cos \theta + i \sin \theta)$

By Euler Formula, $e^{i\theta} = \cos \theta + i \sin \theta$

Then, $z = re^{i\theta}$ is called Exponential representation.

De-Moivre's Theorem

Statement: $(\cos \theta + i \sin \theta)^n = \cos n\theta + i \sin n\theta$; $n \in \mathbb{Q}[i.e. (e^{i\theta})^n = e^{in\theta}]$

Remarks

- $\checkmark \qquad (\cos \theta i \sin \theta)^{n} = \cos n\theta i \sin n\theta$
- $\checkmark \qquad (\sin\theta \pm i\cos\theta)^n \neq \sin n\theta \pm i\cos n\theta$
- $\checkmark \quad (\cos\theta \pm i\sin\alpha)^n \neq \cos n\theta \pm i\sin n\alpha$
- $\checkmark \qquad (\sin\theta \pm i\cos\theta)^n = \left[\cos\left(\frac{\pi}{2} \theta\right) \pm i\sin\left(\frac{\pi}{2} \theta\right)\right]^n = \cos n\left(\frac{\pi}{2} \theta\right) \pm i\sin n\left(\frac{\pi}{2} \theta\right)$

Exe	rcise	-1

С	Que.1	Find the Real & Imaginary part of $f(z) = z^2 + 3z$. $\left[\text{Re}(f(z)) = x^2 + 3x - y^2, \text{Im}(f(z)) = 2xy + 3y \right]$	Jun-13
Н	Que.2	Write function $f(z) = z + \frac{1}{z} in f(z) = u(r, \theta) + iv(r, \theta)$ form. $\left[u(r, \theta) = \left(r + \frac{1}{r} \right) \cos \theta \& v(r, \theta) = \left(r - \frac{1}{r} \right) \sin \theta \right]$	Dec-13

1. Complex Numbers And Functions

PAGE | 4

		Find the value of $Re(f(z))$ and $Im(f(z))$ at the indicated point	
С	Que.3	where $f(z) = \frac{1}{1-z}$ at 7 + 2i.	Jun-10
	Queio	$\left[\text{Re}(f(z)) - \frac{3}{20}; \text{Im}(f(z)) = \frac{1}{20} \right]$	Jun-10
Т	Que.4	Write function $f(z) = 2iz + 6\overline{z}$ in $f(z) = u(r, \theta) + iv(r, \theta)$ form. $[u(r, \theta) = 6r \cos \theta - 2r \sin \theta \& v(r, \theta) = 2r \sin \theta - 6r \cos \theta]$	Jun-14
Н	Que.5	Separate real and imaginary parts of sinh z. [Re(sinh z) = sinh x cos y ; Im(sinh z) = cosh x sin y]	Jun-14
C	Que.6	Find real and imaginary part of $(-1 - i)^7 + (-1 + i)^7$. [Re(z) = -16, Im(z) = 0]	Jun-11
		Find real and imaginary parts of $(\sqrt{i})^{\sqrt{i}}$.	
C	Que.7	$\begin{bmatrix} \operatorname{Re}(z) = e^{-\left(\pi k + \frac{\pi}{4}\right)\frac{1}{\sqrt{2}}} \left[\cos\left(\pi k + \frac{\pi}{4}\right)\frac{1}{\sqrt{2}} \right] \\ \operatorname{Im}(z) = e^{-\left(\pi k + \frac{\pi}{4}\right)\frac{1}{\sqrt{2}}} \left[\sin\left(\pi k + \frac{\pi}{4}\right)\frac{1}{\sqrt{2}} \right] \end{bmatrix}$	Dec-15
		$\left[Im(z) = e^{-\left(\pi k + \frac{\pi}{4}\right)\frac{1}{\sqrt{2}}} \left[sin\left(\pi k + \frac{\pi}{4}\right)\frac{1}{\sqrt{2}} \right] \right]$	
С	Que.8	Determine the modulus of following complex number.	
		1. $z = 3 + 4i$.	
		2. $z = \frac{1-2i}{i-1}$	
		3. $z = \frac{1-7i}{(2+i)^2}$ [Nov-11]	
		$\left[5; \sqrt{\frac{5}{2}}; \sqrt{2}\right]$	
С	Que.9	Is $\operatorname{Arg}(z_1 z_2) = \operatorname{Arg}(z_1) + \operatorname{Arg}(z_2)$? Justify.	Jun-12
		Find the Principal Value of argument (Principal Argument).	
		1. $z = i$	
		2. $z = \frac{-2}{1+i\sqrt{3}}$ [Nov-11; Dec-14]	
		3. $z = \sqrt{3} + i$	
C	Que.10	4. $z = -\sqrt{3} + i$	
		5. $z = -\sqrt{3} - i$	
		6. $z = \sqrt{3} - i$	
		$\left[\frac{\pi}{2};\frac{2\pi}{3};\frac{\pi}{6};\frac{5\pi}{6};-\frac{5\pi}{6};-\frac{\pi}{6}\right]$	

Basic Definition

Distance

Let z = a + ib and w = c + id be complex numbers. Distance between z & w is defined as below.

i. e.
$$|z - w| = \sqrt{(a - c)^2 + (b - d)^2}$$

So, Modulus of a complex number z, $|z| = \sqrt{a^2 + b^2}$ is distance form origin.

Circle

If z' is a complex number and r is a positive number, then equation of circle is |z - z'| = r.

It gives the set of all those z' whose distance from z is r.[points on the boundary] [See fig A]

Open Circular Disk

The equation |z - z'| < r means set of all points inside the disk of radius r about a.

Here, "OPEN" means that points on the boundary of circle are not in the set. [See Fig B]

Closed Circular Disk

The equation $|z - z'| \le r$ means set of all points on the boundary and inside the disk of radius r about a. It is union of circle and open circular disk.

Here, "CLOSED " means that points on the boundary of circle are in the set. [See Fig C]

Neighborhood

The neighborhood of a point z_0 is set of points inside the circle centered at z_0 and radius ϵ .

i. e.
$$|z - z_0| < \epsilon$$

Neighborhood is nothing but a open circular disk with center z_0 and radius $\epsilon.$

Deleted Neighborhood

The deleted neighborhood of a point z_0 is set of points inside the circle centered at z_0 and radius ϵ except the center z_0 .

i. e.
$$0 < |z - z_0| < \epsilon$$

A deleted neighborhood is also known as "Punctured Disk".

Annulus OR Annular Region

The region between two concentric circle of radii $r_1 \mbox{ \& } r_2$ can be represented as

i. e.
$$r_1 < |z - z_0| < r_2$$

Interior Point, Exterior Point and Boundary Point

A point z_0 is said to be interior point of a set S whenever there is some neighborhood of z_0 that contains only points of S.

A point z_1 is said to be exterior point of a set S whenever there is no neighborhood of z_1 that contains only points of S.

A point z_2 is said to be boundary point of a set S whenever neighborhood of z_2 contains both interior and exterior as well.

Open Set

A set is open if it contains none of the boundary points.

Closed Set

A set is said to be closed set if it contains all of the boundary points.

Connected Set

A open set *S* is connected if each pair of points z_0 and z_2 in it can be joined by a polygonal line, consisting of finite number of line segments joined end to end that lies entirely in *S*.

Domain and Region [Jun-12 ; Jun-14]

A set *S* is said to be domain if set *S* is open and connected. Note that any neighborhood is a Domain. A domain together with some, none or all of its boundary points is called region.

Compact region

A set *S* is said to be domain if set *S* is closed and connected.

Que.1	Sketch the following region and check whether it is open, closed, domain, connected or bounded.				
C	1. $S = \{z / -1 < Im(z) < 2\}$	Jun-12			
Н	2. Re $z \ge 4$	Dec-15			
Н	3. Im z > 1	Dec-14			
С	4. $ z \le 1$	Jun-13			
С	5. $ z - 2 + i \le 1$	Dec-13			
Т	6. $ z - 1 + 2i \le 2$	Jun-12 Jun-14			
C	7. $1 < z + i \le 2$	Dec-15			
Т	8. $ 2z + 1 + i < 4$	Dec-15			
С	9. $0 \le \arg z \le \frac{\pi}{4}$	Dec-14			

Exercise-2

Formula To Find Square Root Of Complex Number

Let, z = x + iy be a complex number. Formula for finding square root of z is as below,

$$\sqrt{x+iy} = \pm \left[\sqrt{\frac{|z|+x}{2}} + i(sign \ of \ y \) \sqrt{\frac{|z|-x}{2}} \right]$$

C	Que.1	Find $\sqrt{-8+6i}$. $[\pm (1+3i)]$	
С	Que.2	Find the roots of the equation $z^2 + 2iz + 2 - 4i = 0$. [z = 1 + i, -1 - 3i]	
Н	Que.3	Solve the Equation of $z^2 - (5 + i)z + 8 + i = 0$. [$z = 3 + 2i$, $2 - i$]	Jun-10
Т	Que.4	Find the roots of the equation $z^2 - (3 - i)z + 2 - 3i = 0$. [z = 2 - 3i, 1 + i]	May-15
С	Que.5	Find the roots common to equation $z^4 + 1 = 0$ and $z^6 - i = 0$. $\begin{bmatrix} z = \pm \frac{1-i}{\sqrt{2}} \end{bmatrix}$	Dec-15

Let, $z = r(\cos \theta + i \sin \theta)$; r > 0

For, $n \in \mathbb{N}$

$$z^{\frac{1}{n}} = r^{\frac{1}{n}} [\cos(\theta + 2k\pi) + i\sin(\theta + 2k\pi)]^{\frac{1}{n}}$$
$$= r^{\frac{1}{n}} \left[\cos\left(\frac{\theta + 2k\pi}{n}\right) + i\sin\left(\frac{\theta + 2k\pi}{n}\right) \right]$$
$$= r^{\frac{1}{n}} e^{i\left(\frac{\theta + 2k\pi}{n}\right)}; k = 0, 1, 2, ..., n - 1 \qquad \text{Where, } r^{\frac{1}{n}} \text{ is positive nth root of } r.$$

By putting = 0,1,2, ..., n-1, we have distinct roots of $z^{\frac{1}{n}}$.

For = n, n + 1, n + 2, ..., we have repeated roots of $z^{\frac{1}{n}}$.

С	Que.1	Show that if c is any n^{th} root of Unity other than Unity itself, then $1 + c + c^2 + \dots + c^{n-1} = 0$ OR Prove that the n roots of unity are in Geometric Progression.	Nov-10 Jun-14
С	Que.2	State De Moivre's formula. Find and graph all fifth root of unity in complex plane. $\left[z = e^{i\left(\frac{2k\pi}{5}\right)}; k = 0, 1, 2, 3, 4\right]$	Jun-13
н	Que.3	State De Moivre's formula. Find and graph all sixth root of unity in complex plane. $\left[z = e^{i\left(\frac{k\pi}{3}\right)}; k = 0, 1, 2, 3, 4, 5\right]$	Dec-13
Т	Que.4	Find and plot the square root of 4 <i>i</i> . $[z = \pm \sqrt{2}(1 + i)]$	
С	Que.5	State De Moivre's formula. Find and plot all root of $\sqrt[3]{8i}$. $\left[z = 2 e^{i\left(\frac{4k+1}{6}\right)\pi}; k = 0, 1, 2\right]$	Jun-10 Dec-15
Т	Que.6	Find and plot all the roots of $(1 + i)^{\frac{1}{3}}$. $\left[z = 2^{\frac{1}{6}} e^{i\left(\frac{\pi}{12} + \frac{2k\pi}{3}\right)}; k = 0, 1, 2 \right]$	

Trigonometric (Circular) Functions Of a Complex Number

.

By Euler's Formula,

 $e^{iz} = \cos z + i \sin z \Longrightarrow e^{-iz} = \cos z - i \sin z$

•
$$e^{iz} + e^{-iz} = 2 \cos z \implies \cos z = \frac{e^{iz} + e^{-iz}}{2}$$

• $e^{iz} - e^{-iz} = 2i \sin z \implies \sin z = \frac{e^{iz} - e^{-iz}}{2i}$

Hyperbolic Function Of a Complex Number	Relation between Circular and Hyperbolic Functions
$\checkmark \cosh z = \frac{e^z + e^{-z}}{2}$	$\checkmark \sin ix = i \sinh x \qquad \checkmark \sinh ix = i \sin x$
\checkmark sinh z = $\frac{e^z - e^{-z}}{2}$	\checkmark cos ix = cosh x \checkmark cosh ix = cos x
\checkmark tanh z = $\frac{e^z - e^{-z}}{e^z + e^{-z}}$	$\checkmark \tan ix = i \tanh x \qquad \checkmark \tanh ix = i \tan x$
Hyperbolic Identities	Inverse Hyperbolic Functions
$\checkmark \cosh^2 x - \sinh^2 x = 1$	$\checkmark \sinh^{-1} z = \log \left(z + \sqrt{z^2 + 1} \right)$
\checkmark sech ² x + tanh ² x = 1	\checkmark cosh ⁻¹ z = log(z + $\sqrt{z^2 - 1}$)
\checkmark coth ² x - cosech ² x = 1	$\checkmark \tanh^{-1} z = \frac{1}{2} \log \left(\frac{1+z}{1-z} \right)$

Show that

$$\sinh^{-1} z = \log(z + \sqrt{z^2 + 1}), \cosh^{-1} z = \log(z + \sqrt{z^2 - 1}) \& \tanh^{-1} z = \frac{1}{2} \log(\frac{1+z}{1-z}).$$
Proof:
Let $w = \sinh^{-1} z \Longrightarrow z = \sinh w = \frac{e^w - e^{-w}}{2}$
 $\Rightarrow z = \frac{e^{2w} - 1}{2}$

$$\Rightarrow e^{2w} - 2ze^{w} - 1 = 0$$

$$\Rightarrow e^{w} = \frac{2z \pm \sqrt{4z^{2} + 4}}{2} = z + \sqrt{z^{2} + 1}$$

$$\Rightarrow w = \log(z + \sqrt{z^{2} + 1})$$

$$\Rightarrow \sinh^{-1} z = \log(z + \sqrt{z^{2} + 1}) \dots (A)$$

Let $w = \cosh^{-1} z \Rightarrow z = \cosh w = \frac{e^{w} + e^{-w}}{2}$

$$z = \frac{e^{2w} + 1}{2e^{w}}$$

$$\Rightarrow e^{2w} - 2ze^{w} + 1 = 0$$

$$\Rightarrow e^{w} = \frac{2z \pm \sqrt{4z^{2} - 4}}{2} = z + \sqrt{z^{2} - 1}$$

$$\Rightarrow w = \log(z + \sqrt{z^{2} - 1})$$

$$\Rightarrow \cosh^{-1} z = \log(z + \sqrt{z^{2} - 1}) \dots (B)$$

Let $w = \tanh^{-1} z \Rightarrow z = \tanh w = \frac{\sinh w}{\cosh w} = \frac{e^{w} - e^{-w}}{e^{w} + e^{-w}}$

$$\Rightarrow z = \frac{e^{w} - e^{-w}}{e^{w} + e^{-w}}$$

Taking componendo and dividendo, we get

$$\Rightarrow \frac{1 + z}{1 - z} = \frac{(e^{w} + e^{-w}) + (e^{w} - e^{-w})}{(e^{w} + e^{-w}) - (e^{w} - e^{-w})} = \frac{2e^{w}}{2e^{-w}} = e^{2w}$$

$$\Rightarrow 2w = \log(\frac{1 + z}{1 - z})$$

 $\Rightarrow w = \frac{1}{2} \log\left(\frac{1+z}{1-z}\right) \Rightarrow \tanh^{-1} z = \frac{1}{2} \log\left(\frac{1+z}{1-z}\right) \dots (C)$

Eqn. (A), (B) & (C) are required equations.

Exercise-5

С	Que.1	Prove that $\sin^{-1} z = -i \ln(iz + \sqrt{1 - z^2})$	Jun-13
Т	Que.2	Prove that $\tan^{-1} z = \frac{i}{2} \log \frac{i+z}{i-z}$.	Jun-11
С	Que.3	Show that $\cosh^{-1} z = \ln(z + \sqrt{z^2 - 1})$	Jun-14
Т	Que.4	Prove that sech ⁻¹ $x = \log \left[\frac{1+\sqrt{1-x^2}}{x}\right]$.	Dec-15
С	Que.5	Show that $\cos(i\overline{z}) = \overline{\cos(iz)}$ for all z.	Nov-12
Т	Que.6	Show that $\overline{sin(iz)} = sin(i\overline{z})$ if and only if $z = n\pi i$ ($n \in Z$).	Dec-14
С	Que.7	Expand $\cosh(z_1 + z_2)$.	Nov-12
Н	Que.8	Expand $\sinh(z_1 + z_2)$.	
С	Que.9	Prove that $ e^{-2z} < 1$ if and only if $\text{Re}(z) > 0$.	Nov-12
С	Que.10	Find all Solution of $\sin z = 2$.	Jun-10

Logarithm of a complex number

Polar representation of complex number, $z = re^{i\theta}$

$$\Rightarrow$$
 z = re^{i(θ +2k π)}

 $\Rightarrow \log z = \ln r + i(\theta + 2k\pi)$

$$\Rightarrow \log z = \ln\left(\sqrt{x^2 + y^2}\right) + i\left(2k\pi + \tan^{-1}\left(\frac{y}{x}\right)\right) ; k = 0, \pm 1, \pm 2, \dots$$

is called "GENERAL VALUE OF LOGARITHM".

If
$$k = 0$$
,

 \Rightarrow Log z = ln($\sqrt{x^2 + y^2}$) + i tan⁻¹($\frac{y}{x}$) is called "PRINCIPAL VALUE OF LOGARITHM".

Note

- ✓ In Complex analysis,
 - Log is used for Complex Single-Valued Function.
 - log is used for Complex Multi-Valued Function.
 - In is used for Real Valued Function.

Exercise-6

С	Que.1	Define $\log(x + iy)$. Determine $\log(1 - i)$. $\left[\ln\sqrt{2} - \frac{i\pi}{4}\right]$	Jun-12
С	Que.2	Show that the set of values of $log(i^2)$ is not the same as the set of values 2 log i.	Nov-12
Н	Que.3	For the principle branch show that $Log(i^3) \neq 3Log(i)$.	Jun-13
Т	Que.4	Find the principal value of $\left[\frac{e}{2}\left(-1-i\sqrt{3}\right)\right]^{3\pi i}$. $\left[3\pi i\left(1-\frac{2\pi i}{3}\right)\right]$	Nov-11
С	Que.5	Find all root s of the Equation $\log z = \frac{i\pi}{2}$. $[z = i]$	Nov-12 Dec-15
Н	Que.6	Prove that $i^i = e^{-(4n+1)\frac{\pi}{2}}$.	Jun-14
С	Que.7	Find the value of $(-i)^{i}$. $\left[e^{-(4n-1)\frac{\pi}{2}}\right]$	Dec-13

Function of a Complex Variable

If corresponding to each value of a complex variable z = x + iy in a given region R, there correspond one or more values of another complex variable w = u + iv then, w is called a function of the complex variable z and is denoted by

$$w = f(z) = u + iv$$

Where, u and v are the real and imaginary part of w respectively and u and v are function of real variable x and y.

i.e.
$$w = f(z) = u(x, y) + i v(x, y)$$

Limit Of Complex Function

A function f(z) is said to have a limit l, if for each +ve number ϵ , there is +ve number δ such that

i.e. $|f(z) - l| < \epsilon$ whenever $0 < |z - z_0| < \delta$

Continuity of Complex function

A complex valued function f(z) is said to be continuous at a point $z = z_0$ if

1. $f(z_0)$ exists 2. $\lim_{z \to z_0} f(z)$ exist 3. $\lim_{z \to z_0} f(z) = f(z_0)$

Remark

- ✓ f(z) = u(x, y) + i v(x, y) is continuous iff u(x, y) and v(x, y) are continuous.
- ✓ If any one of these three conditions of continuity is not satisfied then f(z) is discontinuous at $z = z_0$.

Differentiability of complex function

Let w = f(z) be a continuous function and z_0 be a fixed point then f(z) is said to be differentiable at z_0 if $\lim_{z \to z_0} \frac{f(z) - f(z_0)}{z - z_0}$ exists, then the derivative of f(z) at z_0 is denoted by $f'(z_0)$ and is defined as

$$f'(z_0) = \lim_{z \to z_0} \frac{f(z) - f(z_0)}{z - z_0}$$

Remark

- ✓ The rules of differentiation are same as in calculus of real variables.
- ✓ If function is differentiable, then it is continuous.

С	Que.1	Prove $\lim_{z \to 1} \frac{iz}{3} = \frac{i}{3}$ by definition.	Jun-12
н	Que.2	Using the definition of limit, show that if $f(z) = iz$ in the open disk $ z < 1$, then $\lim_{z \to 1} f(z) = i$.	Dec-14
C	Que.3	Show that the limit of the function does not exist $f(z) = \begin{cases} \frac{Im(z)}{ z }, & z \neq 0\\ 0, & z = 0 \end{cases}$	
C	Que.4	Discuss the continuity of $f(z) = \begin{cases} \overline{z} \\ z \\ 0 \end{cases}$, $z \neq 0$ at origin.	May-15

1. Complex Numbers And Functions

PAGE | 13

Т	Que.5	Discuss continuity of $f(z) = \begin{cases} \frac{\operatorname{Re}(z^2)}{ z ^2} ; z \neq 0\\ 0 ; z = 0 \end{cases}$ at $z = 0$.	Dec-15
н	Que.6	Find out and give reason weather f(z) is continuous at z = 0, if $f(z) = \begin{cases} \frac{\text{Re}(z^2)}{ z }, & z \neq 0\\ 0, & z = 0 \end{cases}$	Jun-10
С	Que.7	Find the derivative of $\frac{z-i}{z+i}$ at i.	Jun-10
С	Que.8	Discuss the differentiability of $f(z) = x^2 + iy^2$.	May-15
Н	Que.9	Show that $f(z) = z \operatorname{Im}(z)$ is differentiable only at $z = 0$ and $f'(0) = 0$.	Nov-11
C	Que.10	Show that $f(z) = z ^2$ is continuous at each point in the plane, but not differentiable.	Dec-14
Т	Que.11	Show that $f(z) = \overline{z}$ is nowhere differentiable.	Jun-14

Analytic Function

A function f(z) is said to be analytic at point $z_0 = x_0 + iy_0$ if the function is differentiable at point z_0 as well as it is differentiable everywhere in the neighbourhood of z_0 .

Examples :

- **1.** $f(z) = \frac{1}{z}$ is analytic at each non-zero point in the finite complex plane.
- **2.** $f(z) = |z|^2$ is not analytic at any non-zero point because it is not differentiable at any non-zero complex number.
- **3.** $f(z) = \overline{z}$ is nowhere analytic because it is nowhere differentiable.

Remark

- ✓ Analytic functions are also known as regular or holomorphic functions.
- ✓ A function f is analytic everywhere in domain D iff it is analytic at each point of domain D.
- ✓ A function f is analytic everywhere in domain D then f is known as entire function in D.

Cauchy-Riemann Equations[C-R equation]

If u(x, y) and v(x, y) are real single-valued functions of x ad y such that $\frac{\partial u}{\partial x}$, $\frac{\partial v}{\partial y}$, $\frac{\partial v}{\partial x}$ and $\frac{\partial v}{\partial y}$ are continuous in the region R,then

$$\frac{\partial \mathbf{u}}{\partial \mathbf{x}} = \frac{\partial \mathbf{v}}{\partial \mathbf{y}} & & \frac{\partial \mathbf{u}}{\partial \mathbf{y}} = -\frac{\partial \mathbf{v}}{\partial \mathbf{x}}$$

are known as Cauchy-Riemann Equations.

Necessary and Sufficient Conditions For f(z) to be Analytic

The necessary and sufficient conditions for the function f(z) = u(x, y) + iv(x, y) to be analytic in a region R are

- $\begin{array}{l}\checkmark \quad \frac{\partial u}{\partial x}, \frac{\partial u}{\partial y}, \frac{\partial v}{\partial x} \text{ and } \frac{\partial v}{\partial y} \text{ are continuous functions of x and y in the region R.} \\ \checkmark \quad \frac{\partial u}{\partial x} = \frac{\partial v}{\partial y} \& \frac{\partial u}{\partial y} = -\frac{\partial v}{\partial x} \end{array}$

i.e. Cauchy-Riemann equations are satisfied.

Proof: (Necessary Condition)

Let, f(z) = u(x, y) + iv(x, y) is analytic in a region \mathbb{R} .

 \Rightarrow f(z) is differentiable at every point of the region \mathbb{R} .

$$\Rightarrow f'(z_0) = \lim_{\Delta z \to 0} \frac{f(z_0 + \Delta z) - f(z_0)}{\Delta z} \dots (1)$$

We know that $z_0 = x_0 + iy_0 \& \Delta z = \Delta x + i\Delta y$

Now, $z_0 + \Delta z = x_0 + \Delta x + i(y_0 + \Delta y)$ $\Rightarrow f(z_0 + \Delta z) = u(x_0 + \Delta x, y_0 + \Delta y) + iv(x_0 + \Delta x, y_0 + \Delta y)$

1. Complex Numbers And Functions

PAGE 15

By Eqn (1),

$$f'(z_0) = \lim_{(\Delta x, \Delta y) \to (0,0)} \frac{u(x_0 + \Delta x, y_0 + \Delta y) + iv(x_0 + \Delta x, y_0 + \Delta y) - u(x_0, y_0) - iv(x_0, y_0)}{\Delta x + i\Delta y}$$

$$= \left[\lim_{(\Delta x, \Delta y) \to (0,0)} \frac{u(x + \Delta x, y + \Delta y) - u(x, y)}{\Delta x + i\Delta y}\right] + i \left[\lim_{(\Delta x, \Delta y) \to (0,0)} \frac{v(x + \Delta x, y + \Delta y) - v(x, y)}{\Delta x + i\Delta y}\right]$$

Here, we consider two paths:

Path I: First $\Delta y \rightarrow 0$ then $\Delta x \rightarrow 0$

$$f'(z_0) = \lim_{\Delta x \to 0} \frac{u(x_0 + \Delta x, y_0) - u(x_0, y_0)}{\Delta x} + i \lim_{\Delta x \to 0} \frac{v(x_0 + \Delta x, y_0) - v(x_0, y_0)}{\Delta x}$$
$$\implies f'(z_0) = \frac{\partial u}{\partial x} + i \frac{\partial v}{\partial x} \quad (2)$$

$$\Rightarrow f'(z_0) = \frac{\partial u}{\partial x} + i \frac{\partial v}{\partial x} \dots (2)$$

Path II: First $\Delta x \rightarrow 0$ then $\Delta y \rightarrow 0$

$$\Rightarrow f'(z_0) = \lim_{\Delta y \to 0} \frac{u(x_0, y_0 + \Delta y) - u(x_0, y_0)}{i\Delta y} + i \lim_{\Delta y \to 0} \frac{v(x_0, y_0 + \Delta y) - v(x_0, y_0)}{i\Delta y}$$
$$\Rightarrow f'(z) = -i \frac{\partial u}{\partial y} + \frac{\partial v}{\partial y} \dots (3)$$

Since, $f'(z_0)$ exists. So, equations (2) and (3) must be equal.

$$\frac{\partial \mathbf{u}}{\partial \mathbf{x}} + \mathbf{i}\frac{\partial \mathbf{v}}{\partial \mathbf{x}} = -\mathbf{i}\frac{\partial \mathbf{u}}{\partial \mathbf{y}} + \frac{\partial \mathbf{v}}{\partial \mathbf{y}}$$

Comparing real and imaginary parts, we get

$$\frac{\partial u}{\partial x} = \frac{\partial v}{\partial y}$$
 and $\frac{\partial u}{\partial y} = -\frac{\partial v}{\partial x}$

Thus, C-R equations are satisfied.

Remark

- \checkmark C.R. equations are necessary condition for differentiability but not sufficient.
- \checkmark If f(z) = u(x, y) + iv(x, y) is an analytic function, then u(x, y) and v(x, y) are conjugate functions.
- If a function is differentiable \Rightarrow function satisfies C.R. equation. If a function does \checkmark not satisfies C.R. equation \Rightarrow function is not differentiable.
- \checkmark If function is differentiable at point (x_0, y_0) then derivative at z_0 is given by
 - $$\begin{split} f'(z_0) &= u_x(x_0,y_0) + iv_x(x_0,y_0). \quad (\text{Cartesian form}) \\ f'(z_0) &= e^{-i\theta}(u_r(r,\theta) + iv_r(r,\theta)). \quad (\text{polar form}) \end{split}$$
 0
 - 0

Cauchy-Riemann Equations in Polar Form

$$\frac{\partial u}{\partial r} = \frac{1}{r} \frac{\partial v}{\partial \theta}$$
 and $\frac{\partial v}{\partial r} = -\frac{1}{r} \frac{\partial u}{\partial \theta}$

HVA	rcise	- /
LAC		

С	Que.1	State necessary and sufficient Condition for function to be analytic and prove that necessary condition.	Nov-10
C	Que.2	The function $f(z) = \begin{cases} \frac{\overline{z}^2}{z}; & z \neq 0 \\ 0; & z = 0 \end{cases}$ satisfies C-R equation at the origin but $f'(0) = 0$ fails to exist.	Nov-12
	Que.3	Show that for the function $f(z) = \begin{cases} \frac{\overline{z}^2}{z}; z \neq 0\\ 0; z = 0 \end{cases}$ is not differentiable at $z = 0$ even though Cauchy Reimann equation are satisfied at $z = 0$.	Dec-15
С	Que.4	Check Whether $f(z) = \overline{z}$ is analytic or not. [Nowhere analytic]	Nov-10
Н	Que.5	Check Whether $f(z) = 2x + ixy^2$ is analytic or not at any point. [Nowhere analytic]	Jun-10
Н	Que.6	State the necessary condition for $f(z)$ to be analytic. For what values of z is the function $f(z) = 3x^2 + iy^2$ analytic? [Except the line $y = 3x$ function is nowhere analytic]	Dec-15
Т	Que.7	Check Whether $f(z) = e^{\overline{z}}$ is analytic or not at any point. [Nowhere analytic]	Jun-10
С	Que.8	Is $f(z) = \sqrt{re^{\frac{i\theta}{2}}}$ analytic? $(r > 0, -\pi < \theta < \pi)$ [Analytic except $(0, 0)$]	Dec-15
С	Que.9	Let $f(z) = z^n = r^n e^{in\theta}$ for integer n.Verify C-R equation and find its derivative. $[f(z) = n z^{n-1}]$	Dec-15
н	Que.10	What is an analytic function? Show that $f(z) = z^3$ is analytic everywhere. [Analytic everywhere]	Jun-14
н	Que.11	Check Whether $f(z) = z^{\frac{5}{2}}$ is analytic or not. [Analytic everywhere]	Nov-10
С	Que.12	Check Whether the function $f(z) = \sin z$ is analytic or not. If analytic find it's derivative. [Analytic everywhere]	Nov-11
Т	Que.13	Examine the analyticity of sinh z. [Nowhere analytic]	Dec-14
С	Que.14	Show that if $f(z)$ is analytic in a domain D & $ f(z) = k(cons.)$ in D then show that $f(z) = k(cons.)$ in D.	Jun-10

1. Complex Numbers And Functions

С	Que.15	 Let a function f(z) be analytic in a domain D prove that f(z) must be constant in D in each of following cases. 1. If f(z) is real valued for all z in D. 2. If f(z) is analytic in D. 	Nov-12
C	Que.16	If f(z) is analytic function, prove that $\left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}\right)\log f'(z) = 0.$	Dec-14
С	Que.17	If f(z) is analytic function, prove that $\left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}\right) \operatorname{Re}(f(z)) ^2 = 2 f'(z) ^2.$	May-15

Harmonic Functions

A real valued function $\phi(x, y)$ is said to be harmonic function in domain D if

- \checkmark $\frac{\partial^2 \Phi}{\partial x^2} + \frac{\partial^2 \Phi}{\partial y^2} = 0.$ (Laplace Equation)
- ✓ All second order partial derivative ϕ_{xx} , ϕ_{xy} , ϕ_{yx} , ϕ_{yy} are continuous.

Theorem

If f(z) = u + iv is analytic in domain D then u and v are harmonic function in D.

Harmonic Conjugate

Let u(x, y) and v(x, y) are harmonic function and they satisfy C.R. equations in certain domain D then v(x, y) is harmonic conjugate of u(x, y).

Theorem

If f(z) = u + iv is analytic in D iff v(x, y) is harmonic conjugate of u(x, y).

Remark

✓ If f(z) = u + iv is analytic function then v(x, y) is harmonic conjugate of u(x, y) but u(x, y) is not harmonic conjugate of v(x, y). −u(x, y) is harmonic conjugate of v(x, y).

Milne-Thomson's Method

This method determines the analytic function f(z) when either u or v is given.

We know that z = x + iy and $\overline{z} = x - iy$

$$\therefore x = \frac{z + \overline{z}}{2} \& y = \frac{z - \overline{z}}{2i}$$
Now, $f(z) = u(x, y) + iv(x, y) = u\left(\frac{z + \overline{z}}{2}, \frac{z - \overline{z}}{2i}\right) + iv\left(\frac{z + \overline{z}}{2}, \frac{z - \overline{z}}{2i}\right)$

Putting $\overline{z} = z$, we get

$$f(z) = u(z, 0) + iv(z, 0)$$

Which is same as f(z) = u(x, y) + iv(x, y) if we replace x by z and y by 0.

Now, f(z) = u + iv

$$\Rightarrow f'(z) = \frac{\partial u}{\partial x} + i\frac{\partial v}{\partial x} = \frac{\partial u}{\partial x} - i\frac{\partial u}{\partial y}$$

(By C. R. equations)

Replacing x by z and y by 0,we get

$$f'(z) = u_x(z, 0) + i u_y(z, 0)$$

Integrating both the sides, with respect to z, we get

$$f(z) = \int u_x(z,0) dz + \int i u_y(z,0) dz.$$

С	Que.1	Define: Harmonic Function. Show that $u(x, y) = x^2 - y^2$ is harmonic. Find the corresponding analytic function $f(z) = u(x, y) + iv(x, y)$. $[f(z) = z^2 + c]$	Jun-13 Dec-15
Н	Que.2	Define: Harmonic Function. Show that is $u(x, y) = x^2 - y^2 + x$ harmonic.Find the corresponding analytic function $f(z) = u(x, y) + iv(x, y)$. $[f(z) = z^2 + z + c]$	Dec-13
Н	Que.3	Find analytic function $f(z) = u + iv$ if $u = x^3 - 3xy^2$. $[f(z) = z^3 + c]$	Jun-14
Н	Que.4	Show that $u(x, y) = 2x - x^3 + 3xy^2$ is harmonic in some domain and find a harmonic conjugate $v(x, y)$. $[v(x, y) = 2y - 3x^2y + y^3 + c]$	Jun-11
С	Que.5	Determine a and b such that $u = ax^3 + bxy$ is harmonic and find Conjugate harmonic. $[a = 0; b \in \mathbb{C}]$	Nov-10
Т	Que.6	Define: Harmonic Function. Show that $u = \frac{x}{x^2+y^2}$ is harmonic function for $\mathbb{R}^2 - (0,0)$.	Jun-14
С	Que.7	Define: Harmonic Function. Show that $u = x \sin x \cosh y - y \cos x \sinh y$ is harmonic.	Jun-12
Т	Que.8	Define Harmonic Function. Show that the function $u(x, y) = e^x \cos y$ is harmonic. Determine its harmonic conjugate $v(x, y)$ and the analytic function $f(z) = u + iv$. $[v(x, y) = e^x \sin y ; f(z) = e^x \cos y + i e^x \sin y]$	Dec-15
С	Que.9	Determine the analytic function whose real part is $e^{x}(x \cos y - y \sin y)$. $[f(z) = z e^{z} + c]$	
Н	Que.10	Determine the analytic function whose real part is $e^{2x}(x \cos 2y - y \sin 2y).$ $[\mathbf{f}(\mathbf{z}) = \mathbf{4z} e^{2z} - 6 e^{2z} + c]$	
Т	Que.11	Show that $u(x, y) = e^{x^2 - y^2} \cos(2xy)$ is harmonic everywhere. Also find a conjugate harmonic for $u(x, y)$. $\left[v(x, y) = e^{x^2 - y^2} \sin(2xy)\right]$	Nov-11

1. Complex Numbers And Functions

PAGE | 19

С	Que.12	Find the analytic function $f(z) = u + iv$, if $u - v = e^{x}(\cos y - \sin y)$		May-15
			$[\mathbf{f}(\mathbf{z}) = \mathbf{e}^{\mathbf{z}} + \mathbf{c}]$	-
		Find the all analytic function $f(z) = u + iv$, if		
Т	Que.13	$u - v = (x - y)(x^2 + 4xy + y^2).$		Nov-12
			$[\mathbf{f}(\mathbf{z}) = -\mathbf{i}\mathbf{z}^3 + \mathbf{c}]$	

Introduction

Integrals of complex valued function of a complex variable are defined on curves in the complex plane, rather than on interval of real line.

Continuous arc

The set of points (x, y) defined by x = f(t), y = g(t), with parameter t in the interval (a, b), define a continuous arc provided f and g are continuous functions.

Smooth arc

If f and g are differentiable on arc a $\leq t \leq b$ and non-zero on open interval a < t < b is called smooth arc.

Simple Curve/Simple arc/Jordan arc

A curve which does not intersect with itself. i.e. if $z(t_1) \neq z(t_2)$ when $t_1 \neq t_2$.

Simple Closed Curve

A simple curve C except for the fact $z(b) \neq z(a)$; where a & b are end points of interval.

Contour

A contour or piecewise smooth arc, is an arc consisting of a finite number of smooth arcs join end to end.

If only initial and final values are same, a contour is called **Simple closed contour**.

A Simply connected domain D is simple closed path in D encloses only points of D. **Examples**

✓ A open disk, ellipse or any simple closed curve.

A domain that is not simply connected is called **multiply connected**.

Examples

✓ An annulus is multiply connected.

Simply connected

Doubly Connected

Triply Connected

Line Integral in Complex Plane

A line integral of a complex function f(z) along the curve C is denoted by $\int_{c} f(z) dz$.

Note that, if C is closed path, then line integral of f(z) is denoted by $\oint_C f(z) dz$.

 $\oint_{C} f(z) dz$ is also known as Contour integral.

2. Complex Integral

Properties of Line Integral

Linearity

$$\int_{C} [k_1 f(z) + k_2 g(z)] dz = k_1 \int_{C} f(z) dz + k_2 \int_{C} g(z) dz$$

Reversing the sense of integration

$$\int_{a}^{b} f(z) dz = -\int_{b}^{a} f(z) dz$$

Partition of Path

J

$$\int_{C} f(z) dz = \int_{C_1} f(z) dz + \int_{C_2} f(z) dz \text{ ; where } c = c_1 \cup c_2$$

For the complex integral

$$\left| \int_{C} f(z) dz \right| \leq \int_{C} |f(z)| |dz|$$

ML inequality

If f(z) is continuous on a contour C, then $\left|\int_{C} f(z)dz\right| \leq ML$.

Where $|f(z)| \le M, z \in \mathbb{C}$ and L is the length of the curve (contour)C.

Note

Real definite integrals are interpreted as area, no such interpretation

С	Que.1	Evaluate $\int_0^{2+i} z^2 dz$ along the line $y = \frac{x}{2}$. $\left[\frac{2}{3} + \frac{11}{3}i\right]$	Jun-13
С	Que.2	Evaluate $\int_{c} (x^{2} - iy^{2}) dz$, along the parabola $y = 2x^{2}$ from (1,2) to (2,8). $\left[\frac{511}{3} - \frac{49}{5}i\right]$	Jun-12 Dec-15
С	Que.3	Evaluate $\int_{c} \text{Re}(z) dz$ where C is the shortest path from $(1 + i)$ to $(3 + 2i)$. [4 + 2i]	Jun-14
н	Que.4	Evaluate $\int_{c} \overline{z} dz$ from $z = 1 - i$ to $z = 3 + 2i$ along the straight line. $\left[\frac{11}{2} + 5i\right]$	Jun-12
Н	Que.5	Evaluate $\int_{c} z^{2} dz$ where C is line joins point (0,0) to (4,2). $\left[\frac{16}{3} + \frac{88}{3}i\right]$	Dec-13
С	Que.6	Evaluate $\int_{c} (x - y + ix^2) dz$, Where c is a straight line from $z = 0$ to $z = 1 + i$. $\left[\frac{i(1+i)}{3}\right]$	
С	Que.7	Evaluate $\int_0^{4+2i} \overline{z} dz$ along the curve $z = t^2 + it$. $\left[10 - \frac{8}{3}i \right]$	Dec-11

С	Que.8	Evaluate $\int_{c} (x - y + ix^{2}) dz$, Where c is along the imaginary axis from $z = 0$ to $z = 1$, $z = 1$ to $z = 1 + i$ & $z = 1 + i$ to $z = 0$. $\left[\frac{3i - 1}{6}\right]$	
Н	Que.9	Evaluate $\int_c \operatorname{Re}(z) dz$, Where c is a straight line from(1,1) to (3,1) & then from (3,1) to (3,2). $[4 + 3\mathbf{i}]$	
Н	Que.10	Evaluate $\int_{c} \bar{z} dz$, where C is along the sides of triangle having vertices $z = 0, 1, i$. [i]	May-15
С	Que.11	Evaluate $\int_{c} z^{2} dz$, Where c is the path joining the points $1 + i$ and $2 + 4i$ along (a) the parabola $x^{2} = y$ (b) the curve $x = t, y = t^{2}$. $\left[-\frac{86}{3} - 6i\right]$	
Н	Que.12	Evaluate $\int_{c} \text{Re}(z^2) dz$. Where c is the boundary of the square with vertices 0, i, 1 + i, 1 in the clockwise direction. $[-1 - i]$	
С	Que.13	Evaluate $\int_{c} f(z)dz$. Where $f(z)$ is defined by $f(z) = \begin{cases} 1 & ; y < 0 \\ 4y & ; y > 0 \end{cases}$. c is the arc from $z = -1 - i$ to $z = 1 + i$ along the curve $y = x^{3}$. [2 + 3i]	
С	Que.14	Find the value of integral $\int_c \overline{z} dz$ where c is the right-hand half $z = 2e^{i\theta}$; $\left(-\frac{\pi}{2} \le \theta \le \frac{\pi}{2}\right)$ of the circle $ z = 2$, from $z = -2i$ to $z = 2i$. [4 πi]	Dec-14

Maximum Modulus Theorem

If f(z) is analytic inside and on a simple closed curve C, then maximum value of |f(z)| occurs on C, unless f(z) must be constant.

C	Que.1	Find an upper bound for the absolute value of the integral $\int_c e^z dz$, where c is the line segment joining the points (0,0) and $(1,2\sqrt{2})$. [3e]	Jun-10
С	Que.2	Without using integration, show that $\left \oint_{C} \frac{e^{z}}{z+1} dz \right \le \frac{8\pi e^{4}}{3}$; C: $ z = 4$.	Jun-13
н	Que.3	Find an upper bound for the absolute value of the integral $\int_{c} \frac{dz}{z^{2}+1}$, where c is the arc of a circle $ z = 2$ that lies in the first quadrant. $\left[\frac{\pi}{3}\right]$	
Т	Que.4	Find an upper bound for the absolute value of the integral $\int_{c} z^{2} dz$, where c is the straight line segment from 0 to 1 + i. $[2\sqrt{2}]$	Jun-14

Cauchy's Integral Theorem (Cauchy Goursat's Theorem) (Jun-'13)

If f(z) is an analytic function in a simply connected domain D and $f^{\prime}(z)$ is

continuous at each point within and on a simple closed curve C in D, then

$$\oint_C f(z)dz = 0$$

Liouville's Theorem

If f(z) is an analytic and bounded function for all z in the entire complex plane, then f(z) is constant.

С	Que.1	State and Prove Cauchy integral theorem.	Jun-10 Dec-14
С	Que.2	Evaluate $\oint_{C} e^{z^{2}} dz$, where C is any closed contour. Justify your answer. [0]	Dec-13
Н	Que.3	If C is any simple closed contour, in either direction, then show that $\int_{c} \exp(z^3) dz = 0.$ [0]	Dec-14
С	Que.4	Evaluate $\oint_{C} (z^2 + 3)dz$, where C is any closed contour. Justify your answer. [0]	Jun-13
Н	Que.5	Evaluate $\oint_{C} (z^2 - 2z - 3) dz$, where C is the circle $ z = 2$. [0]	
С	Que.6	Evaluate $\int_{c} \frac{dz}{z^2}$, c is along a unit circle. [0]	May-15
Н	Que.7	Evaluate $\oint_C \frac{z}{z-3} dz$, where C is the unit circle $ z = 1$. [0]	
Т	Que.8	Evaluate $\oint_C \frac{e^z}{z+i} dz$, where C is the unit circle $ z - 1 = 1$. [0]	May-15
С	Que.9	Evaluate $\oint_C \frac{z+4}{z^2+2z+5} dz$, where C is the circle $ z+1 = 1$. [0]	

Cauchy's Integral Formula (Dec-'15)

If f(z) is an analytic within and on a simple closed curve C and z_0 is any point interior to C, then

$$\oint_C \frac{f(z)}{z - z_0} dz = 2\pi i f(z_0)$$

the integration being taken counterclockwise.

In general,
$$\oint_C \frac{f(z)}{(z-z_0)^{n+1}} dz = \frac{2\pi i}{n!} f^n(z_0)$$

С	Que.1	Prove that $\int_{c} \frac{dz}{z-a} = 2\pi i \int_{c} (z-a)^{n} dz = 0$ [$n \in \mathbb{Z} - \{-1\}$], where C is the circle $ z-a = r$.	Jun-14
Н	Que.2	Evaluate $\oint_C \frac{z^2 - 4z + 4}{(z+i)} dz$, where C is $ z = 2$. $[(-8 + 6i)\pi]$	Dec -13
С	Que.3	Evaluate $\oint_C \frac{\sin 3z}{z + \frac{\pi}{2}} dz$, where C is the circle is $ z = 5$. [2 πi]	Dec -11
С	Que.4	Evaluate $\oint_C \frac{5z+7}{z^2+2z-3} dz$, where C is $ z-2 = 2$. [6 πi]	Jun-13
С	Que.5	Evaluate $\oint_C \frac{dz}{z^2+1}$, where C is $ z + i = 1$, counterclockwise. $[-\pi]$	Jun-10 Jun-14
Н	Que.6	Evaluate $\oint_C \frac{2z+6}{z^2+4} dz$, where C is $ z-i = 2$. $[(3+2i)\pi]$	Jun-13
Т	Que.7	Evaluate $\oint_{C} \frac{1}{(z-1)^2(z-3)} dz$, where C is $ z = 2$. $\left[-\frac{\pi}{2}\mathbf{i}\right]$	Dec -13
С	Que.8	Evaluate $\int_{c} \frac{z}{z^{2}+1} dz$, where c is the circle (i) $\left z+\frac{1}{2}\right = 2$ (ii) $\left z+i\right = 1$. [2 πi , $-\pi i$]	Dec-15
Н	Que.9	Evaluate $\int_{c} \frac{1+z^2}{1-z^2} dz$, where <i>c</i> is unit circle centred at (1) $z = -1$ (2) $z = i$. [2 πi , 0]	Dec-15
С	Que.10	State Cauchy-Integral theorem. Evaluate $\oint_C \left(\frac{3}{z-i} - \frac{6}{(z-i)^2}\right) dz$, where C: $ z = 2$. [6 πi]	May-15
Н	Que.11	Evaluate $\int_{C: z =2} \frac{dz}{z^3(z+4)}$. $\left[\frac{\pi i}{32}\right]$	Dec-15
Т	Que.12	Evaluate $\oint_{C} \frac{e^{z}}{z(1-z)^{3}} dz$, where C is (a) $ z = \frac{1}{2}$ (b) $ z-1 = \frac{1}{2}$. [2 πi , $-\pi ie$]	Jun-10

Power Series

A series of the for

$$\sum_{n=0}^{\infty} a_n (z - z_0)^n = a_0 + a_1 (z - z_0) + a_2 (z - z_0)^2 + \dots + a_n (z - z_0)^n + \dots$$

In which the coefficients $a_1, a_2, a_3, ..., a_n$, .. are real or complex and z_0 is a fixed point in the complex z-plane is called a Power series in powers of $(z - z_0)$ or about z_0 or a power series centered at z_0 .

Convergence of a power series in a disk

The series converges everywhere inside a circular disk $|z - z_0| < R$ and diverges everywhere outside the disk $|z - z_0| > R$.

Here, R is called the radius of convergence and the circle $|z - z_0| = R$ is called the circle of convergence.

Radius of Convergence

Let $\sum_{n=0}^\infty a_n(z-z_0)^n$ be a power series. Radius of convergence R for power series is defined as below

$$R = \frac{\lim}{n \to \infty} \left| \frac{a_n}{a_{n+1}} \right| \quad \text{or} \quad R = \frac{\lim}{n \to \infty} |a_n|^{-\frac{1}{n}}$$

С	Que.1	Discuss the convergence of $\sum_{n=0}^{\infty} \frac{(2n)!}{(n!)^2} (z - 3i)^n$. Also find the radius of convergence. $\left[\mathbf{R} = \frac{1}{4}\right]$	Dec-10 Dec-15
Т	Que.2	Find the radius of convergence of the $\sum_{n=0}^{\infty}(n+2i)^nz^n.$ $[\textbf{R}=\textbf{0}]$	Jun-10
С	Que.3	Find the radius of convergence of $\sum_{n=1}^{\infty} \left(\frac{6n+1}{2n+5}\right)^2 (z-2i)^n$. [R = 1]	May-15
н	Que.4	Find the radius of convergence of the power series a) $\sum_{n=0}^{\infty} \frac{2^n}{n!} z^n$ b) $\sum_{n=1}^{\infty} \left(1 + \frac{1}{n}\right)^{n^2} z^n$ $\left[\mathbf{R} = \infty, \frac{1}{e}\right]$	

Taylor's series

Let f(z) be analytic everywhere inside a circle C with centre at z_0 and radius R. then at each point Z inside C,we have

$$f(z) = f(z_0) + f'(z_0)(z - z_0) + \frac{f''(z_0)}{2!}(z - z_0)^2 + \dots + \frac{f^n(z_0)}{n!}(z - z_0)^n + \dots$$

Maclaurin's Series

If we take $z_0 = 0$, the above series reduces to

$$f(z) = f(0) + f'(0)z + \frac{f''(0)}{2!}z^2 + \dots + \frac{f^n(0)}{n!}z^n + \dots$$

Geometric Series

$$\frac{1}{1-z} = \sum_{n=0}^{\infty} z^n \quad (|z| < 1) \qquad \qquad \frac{1}{1+z} = \sum_{n=0}^{\infty} (-1)^n z^n \quad (|z| < 1)$$

Laurent's Series

If f(z) is analytic within and on the ring (annulus) shaped region R bounded by two concentric circles C_1 and C_2 od radii R_1 and R_2 ($R_2 < R_1$) resp. having center at the point $z = z_0$, then for all z in R, f(z) is uniquely represented by a convergent Laurent's series given by

$$f(z) = \sum_{n=0}^{\infty} a_n (z - z_0)^n + \sum_{n=1}^{\infty} a_{-n} (z - z_0)^{-n}$$

Where,

$$a_{n} = \frac{1}{2\pi i} \int_{C_{1}} \frac{f(t)}{(t - z_{0})^{n+1}} dt \quad \& \quad a_{-n} = \frac{1}{2\pi i} \int_{C_{2}} \frac{f(t)}{(t - z_{0})^{-n+1}} dt$$

Here, $\sum_{n=1}^\infty a_{-n}(z-z_0)^{-n}\,$ is known Pricipal Part of Laurent's series.

С	Que.1	Derive the Taylor's series representation in $\frac{1}{1-z} = \sum_{n=0}^{\infty} \frac{(z-i)^n}{(1-i)^{n+1}} ; \text{ where } z-i < \sqrt{2}$	Dec-12
C	Que.2	Obtain the Taylor's series $f(z) = \sin z$ in power of $\left(z - \frac{\pi}{4}\right)$.	Dec-15

3. Power series

PAGE | 27

Н	Que.3	Develop $f(z) = sin^2 z$ in a Maclaurin series and find the radius of convergence.	Jun-10
Н	Que.4	Find Maclaurin series representation of $f(z) = \sin z$ in the region $ z < \infty$.	Dec-11
С	Que.5	Find the Laurent's expansion of $\frac{\sin z}{z^3}$ at $z = 0$ and classify the singular point $z = 0$.	Dec-15
Н	Que.6	Expand $f(z) = \frac{1-e^z}{z}$ in Laurent's series about $z = 0$ and identify the singularity.	Jun-10
С	Que.7	Show that when $0 < z - 1 < 2$, $\frac{z}{(z - 1)(z - 3)} = \frac{-1}{2(z - 1)} - 3\sum_{n=0}^{\infty} \frac{(z - 1)^n}{2^{n+2}}$	Dec-12
С	Que.8	Find the Laurent's expansion in power of z that represent $f(z) = \frac{1}{z(z-1)} \text{ for domain (a) } 0 < z < 1 \text{ (b) } 0 < z-1 < 1.$	Dec-13
Н	Que.9	Find the Laurent's expansion of $f(z) = \frac{7z-2}{(z+1)z(z-2)}$ in the region 1 < z+1 < 3.	Jun-11
Т	Que.10	Write the two Laurent series expansion in powers of z that represent the function $f(z) = \frac{1}{z^2(1-z)}$ in certain domains, also specify domains.	Dec-10 Jun-13
С	Que.11	Expand $f(z) = \frac{1}{(z+1)(z-2)}$ in the region (i) $ z < 1$ (ii) $1 < z < 2$ (iii) $ z > 2$.	May-15
Н	Que.12	Expand $f(z) = \frac{1}{(z-1)(z-2)}$ in the region (i) $ z < 1$ (ii) $1 < z < 2$.	Jun-14
Н	Que.13	Expand $f(z) = -\frac{1}{(z-1)(z-2)}$ in the region (a) $ z < 1$ (b) $1 < z < 2$ (c) $ z > 2$	Dec-10 Dec-14
Н	Que.14	Expand $f(z) = \frac{1}{(z+2)(z+4)}$ for the region (a) $ z < 2$ (b) $2 < z < 4$ (c) $ z > 4$	Jun-12
С	Que.15	Expand $\frac{1}{z(z^2-3z+2)}$ in a Laurent series about $z = 0$ for the regions (a) $0 < z < 1$ (b) $ z > 2$	Dec-15

3. Power series

PAGE | 28

H	Que.16	Expand $f(z) = \frac{1}{(z+1)(z+3)}$ in Laurent's series in the interval $1 < z < 3$	Dec-11
C	Que.17	Find the series of $f(z) = \frac{z}{(z-1)(z-4)}$ in terms of $(z + 3)$ valid for $ z + 3 < 4$	Jun-12

Definition

Singular point

A point z_0 is a singular point if a function f(z) is not analytic at z_0 but is analytic at some points of each neighborhood of z_0 .

Isolated point

A singular point z_0 of f(z) is said to be isolated point if there is a neighbourhood of z_0 which contains no singular points of f(z) except z_0 .i.e. f(z) is analytic in some deleted neighborhood, $0 < |z - z_0| < \varepsilon$.

e.g. $f(z) = \frac{z^2+1}{(z-1)(z-2)}$ has two isolated point z = 1 & z = 2.

Poles

If principal part of Laurent's series has finite number of terms,

i.e.
$$f(z) = \sum_{n=0}^{\infty} a_n (z - z_0)^n + \frac{b_1}{z - z_0} + \frac{b_2}{(z - z_0)^2} + \dots + \frac{b_n}{(z - z_0)^n}$$

then the singularity $z = z_0$ is said to be pole of order *n*.

If $b_1 \neq 0$ and $b_2 = b_3 = \cdots = b_n = 0$, then

$$f(z) = \sum_{n=0}^{\infty} a_n (z - z_0)^n + \frac{b_1}{z - z_0}$$

the singularity $z = z_0$ is said to be pole of order 1 or a simple pole.

Types of Singularities

Removable singularity

If in the Laurent's series expansion, the principal part is zero.

i. e.
$$f(z) = \sum_{n=0}^{\infty} a_n (z - z_0)^n + 0$$

then the singularity $z = z_0$ is said to be removable singularity. (i.e. f(z) is not defined at $z = z_0$ but $\lim_{z\to 0} f(z)$ exists.) e.g. $f(z) = \frac{\sin z}{z}$ is undefined at z = 0 but $\lim_{z\to 0} \frac{\sin z}{z} = 1$.

So, z = 0 is a removable singularity.

3. Power series

Essential singularity

If in the Laurent's series expansion, the principal part contains an infinite number of terms, then the singularity $z = z_0$ is said to be an essential singularity.

e.g. $f(z) = \sin \frac{1}{z}$ has an essential singularity at z = 0, As $\sin \frac{1}{z} = \frac{1}{z} - \frac{1}{3!z^3} + \frac{1}{5!z^5} + \cdots$

Residue of a function

If f(z) has a pole at the point $z = z_0$ then the coefficient b_1 of the term $(z - z_0)^{-1}$ in the Laurent's series expansion of f(z) at $z = z_0$ is called the residue of f(z) at $z = z_0$.

Residue of f(z) at $z = z_0$ is denoted by $\sum_{z=z_0}^{Res} f(z)$.

Technique to find Residue

✓ If f(z) has a simple pole at $z = z_0$, then $\text{Res}(f(z_0)) = \lim_{z \to z_0} (z - z_0)f(z)$.

✓ If
$$f(z) = \frac{P(z)}{Q(z)}$$
 has a simple pole at $z = z_0$, then $\text{Res}(f(z_0)) = \frac{P(z_0)}{Q'(z_0)}$.

✓ If f(z) has a pole of order n at $z = z_0$, then

$$\operatorname{Res}(f(z_0)) = \frac{1}{(n-1)!} \lim_{z \to z_0} \frac{d^{(n-1)}}{dz^{(n-1)}} [(z-z_0)^n f(z)]$$

С	Que.1	Discuss the singularity of the point $z = 0$ for the function $(z) = \frac{\sin z}{z}$.	Jun-13
Н	Que.2	Expand $f(z) = \frac{z-\sin z}{z^2}$ at $z = 0$, classify the singular point $z = 0$.	May-15
С	Que.3	Classify the poles of $f(z) = \frac{1}{z^2 - z^6}$.	Jun-12
С	Que.4	Find the pole of order of the point $z = 0$ for the function $f(z) = \frac{\sin z}{z^4}$	Dec-13
С	Que.5	Define residue at simple pole and find the sum of residues of the function $f(z) = \frac{\sin z}{z \cos z}$ at its poles inside the circle $ z = 2$.	Dec -10
С	Que.6	Find the residue at $z = 0$ of $f(z) = \frac{1-e^z}{z^3}$.	Jun-12
Н	Que.7	Find the residue at $z = 0$ of $f(z) = z \cos \frac{1}{z}$.	Dec -11
С	Que.8	Show that the singular point of the function $f(z) = \frac{1-\cosh z}{z^3}$ is a pole. Determine the order m of that pole and corresponding residue.	Dec-12
Н	Que.9	Determine residue at poles $\left(\frac{2z+1}{z^2-z-2}\right)$.	Dec-15

С	Que.10	Determine the poles of the function $f(z) = \frac{z^2}{(z-1)^2(z+2)}$ and residue at each pole. Evaluate $\int_c f(z) dz$, where c is the circle $ z = 3$.	Dec-15	
---	--------	---	--------	--

Cauchy's Residue Theorem

If f(z) is analytic in a closed curve C except at a finite number of singular points within C, then

$$\int_C f(z) \, dz = 2\pi i \text{ (sum of the residue at the singular points)}$$

С	Que.1	State Cauchy's residue theorem. Evaluate $\int_C \frac{5z-2}{z(z-1)} dz$, where C is the circle $ z = 2$. [10 πi]	Dec -10
Н	Que.2	Evaluate $\oint_{C} \frac{\cos \pi z^2}{(z-1)(z-2)} dz$, where C is the circle $ z = 3$. [4 πi]	Jun-11
С	Que.3	Using residue theorem, Evaluate $\oint_{C} \frac{e^{z}+z}{z^{3}-z} dz$, Where C: $ z = \frac{\pi}{2}$. $\left[\pi i \left(e - 2 + \frac{1}{e}\right)\right]$	May-15
н	Que.4	Using residue theorem, Evaluate $\oint_C \frac{z^2 \sin z}{4z^2 - 1} dz$, C: $ z = 2$. $\left[\frac{\pi i}{4} \sin \frac{1}{2}\right]$	Jun-10
н	Que.5	Evaluate $\oint_C \frac{\sin \pi z^2 + \cos \pi z^2}{(z-1)^2(z-2)} dz$, where C is the circle $ z = 3$. [$4\pi i(\pi + 1)$]	Dec -11
С	Que.6	Find the value of the integral $\int_{C} \frac{2z^2+2}{(z-1)(z^2+9)} dz$ taken counterclockwise around the circle C: $ z-2 = 2$. $\left[\frac{4}{5}\pi i\right]$	Dec -12
С	Que.7	Determine the poles of the function $f(z) = \frac{z^2}{(z-1)^2(z+2)}$ and residue at each pole.Hence evaluate $\int_C f(z) dz$, where C: $ z = 3$. [$2\pi i$]	Jun-11
н	Que.8	Determine the poles of the function $f(z) = \frac{z^2}{(z-1)^2(z+2)}$ and the residue at each pole. Hence evaluate $\int_c f(z) dz$, where c is the circle $ z = 2.5$. [2 πi]	Jun-14

3. Power series

PAGE | 31

C	Que.9	Evaluate $\int_{C} \frac{dz}{(z^2+1)^2}$, where C: $ z+i = 1$. $\left[-\frac{\pi}{2}\right]$	Jun-12
н	Que.10 Define residue at simple pole. Find the residues at each of its poles of $f(z) = \frac{z^2 - 2z}{(z+1)^2(z^2+4)}$ in the finite z -plane. $\left[2\pi i \left(\frac{2i-14}{25}\right)\right]$		Dec-14
C	Que.11	1 Evaluate $\oint_C e^{\frac{3}{z}} dz$, where C is $ z = 1$. [6 πi]	
н	Que.12	Use residues to evaluate the integrals of the function $\frac{\exp(-z)}{z^2}$ around the circle $ z = 3$ in the positive sense. $[-2\pi i]$	Dec-12
C	Que.13	Evaluate $\oint_C \tan z dz$, where C is the circle $ z = 2$. $[-4\pi i]$	Jun-13
C	Que.14	Evaluate $\oint_C \frac{dz}{\sinh 2z}$, Where C: $ z = 2$. $[-\pi i]$	Dec-12

Rouche's Theorem

If f(z) and g(z) are analytic inside and on a simple closed curve C and if |g(z)| < |f(z)| on C, then f(z) + g(z) and f(z) have the same number of zeros inside C.

С	Que.1	Prove that all the roots of $z^7 - 5z^3 + 12 = 0$ lie between the circles $ z = 1$ and $ z = 2$ using Rouche's theorem.		
Н	Que.2	Use Rouche's theorem to determine the number of zeros of the polynomial $z^6 - 5z^4 + z^3 - 2z$ inside the circle $ z = 1$.	Dec-12	

Integration round the unit circle

An integral of the type $\int_0^{2\pi} F(\cos\theta, \sin\theta) d\theta$, where $F(\cos\theta, \sin\theta)$ is a rational function of $\cos\theta$ and $\sin\theta$ can be evaluated by taking $z = e^{i\theta}$.

Now,
$$\cos \theta = \frac{e^{i\theta} + e^{-i\theta}}{2} = \frac{1}{2}\left(z + \frac{1}{z}\right) = \frac{1}{2}\left(\frac{z^2 + 1}{z}\right)$$

 $\sin \theta = \frac{e^{i\theta} - e^{-i\theta}}{2i} = \frac{1}{2i}\left(z - \frac{1}{z}\right) = \frac{1}{2i}\left(\frac{z^2 - 1}{z}\right)$
Here, $z = e^{i\theta} \Longrightarrow dz = ie^{i\theta}d\theta \Rightarrow d\theta = \frac{dz}{z}$

Now, the given integral takes the form $\int_{c} f(z)dz$, where f(z) is a rational function of z and c is the unit circle |z| = 1. This complex integral can be evaluated using the residue theorem.

Integration around a small semi-circle

Using Residue theorem,

$$\oint_{c} F(z) \, dz = \int_{C_{R}} F(z) \, dz + \int_{-R}^{R} F(x) \, dx \dots \dots \quad (1)$$

Now, By Cauchy's Residue Theorem

$$\oint_{c} F(z) dz = 2\pi i \times \text{sum of residues inside c.}$$
As $R \to \infty$, $\int_{-R}^{R} F(x) dx \Longrightarrow \int_{-\infty}^{\infty} F(x) dx$
Also, $\int_{C_{R}} F(z) dz \to 0$
By Eq.¹, $\int_{-\infty}^{\infty} F(x) dx = 2\pi i \times \text{sum of residues of } f(z) \text{ inside the c.}$

С	Que.1	Using the residue theorem, evaluate $\int_0^{2\pi} \frac{d\theta}{5-3\sin\theta}$. $\left[\frac{\pi}{2}\right]$	Dec -10 Dec-15
Н	Que.2	Using the residue theorem, evaluate $\int_0^{2\pi} \frac{4 d\theta}{5+4 \sin \theta}$. $\left[\frac{2\pi}{3}\right]$	Dec -11
Т	Que.3	Evaluate $\int_0^{\pi} \frac{d\theta}{17-8\cos\theta}$, by integrating around a unit circle. $\left[\frac{\pi}{15}\right]$	Jun-11
С	Que.4	Using the residue theorem, evaluate $\int_0^{2\pi} \frac{d\theta}{(2+\cos\theta)^2}$. $\left[\frac{4\pi}{3\sqrt{3}}\right]$	Jun-13

4. Application To Contour Integration

Н	Que.5	Evaluate $\int_0^{2\pi} \frac{d\theta}{3-2\cos\theta+\sin\theta}$.	[π]	Dec-12
С	Que.6	Using contour Integration show that $\int_0^\infty \frac{dx}{1+x^4} = \frac{\pi}{2\sqrt{2}}$.		Dec-15
С	Que.7	Use residues to evaluate $\int_0^\infty \frac{x^2 dx}{(x^2+1)(x^2+4)}$.	$\left[\frac{\pi}{18}\right]$	Jun-11
н	Que.8	Use residues to evaluate $\int_{-\infty}^{\infty} \frac{dx}{(x^2+1)(x^2+4)}$.	$\left[\frac{\pi}{9}\right]$	
С	Que.9	Let $a > b > 0$. Prove that $\int_{-\infty}^{\infty} \frac{\cos x dx}{(x^2 + a^2)(x^2 + b^2)} = \frac{\pi}{a^2 - b^2} \left(\frac{e^{-b}}{b} - \frac{e^{-a}}{a}\right).$		Jun-12
Т	Que.10	Evaluate $\int_0^\infty \frac{x \sin x}{x^2+9} dx$ using residue.	$\left[\frac{\pi}{2e^3}\right]$	Dec -13
Н	Que.11	Using the theory of residue, evaluate $\int_{-\infty}^{\infty} \frac{\cos x}{x^2+1} dx$.	$\left[\frac{2\pi}{e}\right]$	May-15

Definitions

Conformal Mapping

Suppose two curves c_1 and c_2 intersect at point *P* in *Z*-plane and the corresponding two curves c_1' and c_2' at P' in the *W*-plane.

If the angle of intersection of the curves at P is same as the angle of intersection of the curve P' in both magnitude and sense, then the transformation is said to be Conformal.

Fixed Point (Invariant Point)

Fixed points of mapping w = f(z) are points that are mapped onto themselves are "kept fixed" under the mapping.

Critical Point

The point where f'(z) = 0 are called Critical Point.

Ordinary Point

The point where $f'(z) \neq 0$ is called Ordinary Point.

Exercise-1

С	Que 1.	Find Fixed point of bilinear trans. (I) $w = \frac{z}{2-z}$ (II) $w = \frac{(2+i)z-2}{z+i}$ (III) $w = \frac{3iz+1}{Z+i}$ [(I) $\alpha = 0, \beta = 1$ (II) $\alpha = 1 + i, \beta = 1 - i$ (III) $\alpha = i$]	
С	Que 2.	Find fixed point of $w = \frac{z+1}{z}$ and verify your result. $\left[\alpha = \frac{1}{2} + \frac{\sqrt{5}}{2}, \beta = \frac{1}{2} - \frac{\sqrt{5}}{2}\right]$	Jun-12
С	Que 3.	Define Critical point & find critical point of the $w = z + z^2$. $\begin{bmatrix} z = -\frac{1}{2} \end{bmatrix}$	
С	Que 4.	What does conformal mapping mean? At what points is the mapping by $w = z^2 + \frac{1}{z^2}$ not conformal? [$z = \pm 1, \pm i$]	Jun -14

Elementary Transformation

С	Que 1.	Find and sketch the image of the region $ z > 1$ under the transformation $w = 4z$. $[w > 4]$		
н	Que 2.	Determine & sketch the image of $ z = 1$ under the transformation $w = z + i.$ $[u^2 + (v - 1)^2 = 1]$		
С	Que 3.	Show that the region in the z- plane given by $x > 0$, $0 < y < 2$ has the image $-1 < u < 1$, $v > 0$ in the w-plane under the transformation $w = iz + 1$.	Jun-11	

5. Conformal Mapping And It's Application

Н	Que 4.	Find the image of infinite strip $0 \le x \le 1$ under the transformation $w = iz + 1$. Sketch the region in ω – plane. $[0 \le v \le 1]$			
С	Que 5.	Find & sketch (plot) the image of the region $x \ge 1$ under the transformation $w = \frac{1}{z}$. $\left[\left w - \frac{1}{2} \right \le \frac{1}{2} \right]$	Nov-10		
Н	Que 6.	Find the image of infinite strip $\frac{1}{4} \le y \le \frac{1}{2}$ under trans. $w = \frac{1}{2}$. [Region between the circles $ w + 2i \le 2$ $\& w + i \ge 1$]	Nov-10		
С	Que 7.	Find image of critical $ z = 1$ under transformation $w = f(z) = \frac{z-i}{1-iz}$ & find fixed points. $[\mathbf{v} = 0]$	Nov-11		
С	Que 8.	Find the image in the <i>w</i> –plane of the circle $ z - 3 = 2$ in the z – plane under the inversion mapping $w = \frac{1}{z}$.			
Н	Que 9.	Explain translation, rotation and magnification transformation. Find the image of the $ z - 1 = 1$ under transformation $w = \frac{1}{z}$. $\left[u = \frac{1}{2}\right]$			
С	Que 10.	Find the image of region bounded by $1 \le r \le 2 \& \frac{\pi}{6} \le \theta \le \frac{\pi}{3}$ in thez- Plane under the transformation $w = z^2$. Show the regiongraphically. $\left[1 \le r' \le 4 \& \frac{\pi}{3} \le \theta' \le \frac{2\pi}{3}\right]$	Nov-11		
С	Que 11.	Determine the points where $w = z + \frac{1}{z}$ is not conformal mapping. Also find image of circle $ z = 2$ under the transformation $w = z + \frac{1}{z}$. $\left[\frac{u^2}{25} + \frac{v^2}{9} = \frac{1}{4}\right]$	May-15		

Bilinear Transformation / Linear Fractional / Mobius Transformation

A transformation of the form $w = \frac{az+b}{cz+d}$; Where a,b,c,d are complex constants and $ad - bc \neq 0$ is called a Bilinear Transformation.

Determination of Bilinear Transformation

If w_1, w_2, w_3 are the respective images of distinct points z_1, z_2, z_3 then

$$\frac{(w - w_1)(w_2 - w_3)}{(w - w_3)(w_2 - w_1)} = \frac{(z - z_1)(z_2 - z_3)}{(z - z_3)(z_2 - z_1)}$$

		Determine bilinear transformation which maps point $0, \infty, i$ into $\infty, 1, 0$.	
C	Que 1.	$\left[\mathbf{w} = \frac{\mathbf{z} - \mathbf{i}}{\mathbf{z}}\right]$	Jun-12

5. Conformal Mapping And It's Application

Define Mobius transformation. Determine the Mobius transformation that maps С $z_1 = 0, z_2 = 1, z_3 = \infty$ on to $w_1 = -1, w_2 = -i, w_3 = 1$ respectively. Jun-10 Oue 2. $\left[\mathbf{w} = -\left(\frac{1+\mathbf{i}\mathbf{z}}{1-\mathbf{i}\mathbf{z}}\right)\right]$ Determine bilinear transformation which maps point 0, i, 1 into i, $-1, \infty$ Η $\left[w = i\left(\frac{i-z}{i+z}\right)\right]$ Mav-15 Que 3. Define Mobius transformation. Determine the Mobius transformation that maps $z_1 = 0$, $z_2 = 1$, $z_3 = \infty$ onto $w_1 = -1$, $w_2 = -i$, $w_3 = 11$ respectively. Η Que 4. Dec-15 $\left[\mathbf{w} = \left(\frac{\mathbf{z} - \mathbf{i}}{\mathbf{z} + \mathbf{i}}\right)\right]$ Determine the Linear Fractional Transformation that maps $z_1 = 0, z_2 = 1, z_3 = \infty$ onto $w_1 = -1, w_2 = -i, w_3 = 1$ respectively. Η **Oue 5**. Jun -14 $\left[\mathbf{w} = \frac{\mathbf{z} - \mathbf{i}}{\mathbf{z} + \mathbf{i}}\right]$ Find bilinear transformation, which maps the points $1, -1, \infty$ onto the points Т Que 6. Dec-12 $\left| \mathbf{w} = \mathbf{1} + \frac{\mathbf{i}}{\mathbf{z}} \right|$ 1 + i, 1 - i, 1. Also find fixed point. Find the bilinear transformation that maps the points $z_1 = 1, z_2 = i, z_3 = -1$ on to $w_1 = -1, w_2 = 0, w_3 = 1$ respectively. С Find image of |z| < 1 under this transformation. Dec-13 Que 7. $\left[w = \frac{z - i}{iz - 1}\right]$ Define a Linear Fractional Transformation. Find the bilinear transformation that maps the points $z_1 = -1$, $z_2 = 0$, $z_3 = 1$ on to С Que 8. Jun-13 $w_1 = -i_1 w_2 = 1$, $w_3 = i$ respectively. Also find w for $z = \infty$. $\left[w = \frac{i-z}{i+z}\right]$ (when $z \to \infty$, w = -1) Find bilinear transformation, which maps the point z = 1, i, -1 on to the point w = i, 0, -i. Hence find the image of |z| < 1. Т Que 9. Jun-11 $\left[w = \frac{1 + iz}{1 - iz}\right]$ Find the Bilinear transformation which maps z = 1. *i*. -1 into w = 2, *i*, -2. $\left[w = \frac{1 + iz}{1 - iz}\right]$ Η Que 10. Dec-15

SR. NO.	TOPIC NAME		
1.	Definition of Operators		
2.	Relation Between Operators		
3.	Newton's Forward Difference Formula		
4.	Newton's Backward Difference Formula		
5.	Gauss's Forward Difference Formula		
6.	Gauss's Backward Difference Formula		
7.	Stirling Formula		
8.	Newton's Divided Difference		
9.	Newton's Divided Difference Formula		
10.	Lagrange's interpolation Formula		

Definition of Operators

Forward difference[Δ]	$\Delta f(x) = f(x+h) - f(x)$
Backward difference [∇]	$\nabla f(x) = f(x) - f(x - h)$
Central difference $[\delta]$	$\delta f(x) = f\left(x + \frac{h}{2}\right) - f\left(x - \frac{h}{2}\right)$
Average Operator [µ]	$\mu f(\mathbf{x}) = \frac{1}{2} \left[f\left(\mathbf{x} + \frac{\mathbf{h}}{2}\right) + f\left(\mathbf{x} - \frac{\mathbf{h}}{2}\right) \right]$
Shift Operator [E]	Ef(x) = f(x+h)
Differential Operator [D]	$Df(x) = \frac{d}{dx}f(x) = f'(x)$

Relation Between Operators

1. $E = 1 + \Delta$ (Jun-13, Dec-14)

Proof

$$(1 + \Delta)f(x) = f(x) + \Delta f(x) = f(x) + f(x + h) - f(x) = Ef(x)$$

2. $E\nabla = \Delta$

Proof

$$E\nabla(f(x)) = E(\nabla f(x)) = E(f(x) - f(x - h)) = Ef(x) - Ef(x - h)$$
$$= f(x + h) - f(x)$$
$$= \Delta f(x)$$

$$\Rightarrow E\nabla(f(x)) = \Delta f(x); \forall f(x)$$
$$\Rightarrow E\nabla = \Delta$$
3. $\Delta \nabla = \Delta - \nabla$

Proof

$$\begin{split} \Delta \nabla \big(f(x) \big) &= \Delta \big(\nabla f(x) \big) = \Delta \big(f(x) - f(x-h) \big) = \Delta f(x) - \Delta f(x-h) \\ &= [f(x+h) - f(x)] - [f(x) - f(x-h)] \\ &= \Delta f(x) - \nabla f(x) = (\Delta - \nabla) f(x) \end{split}$$

 $\Rightarrow \Delta \nabla (f(x)) = (\Delta - \nabla) f(x); \forall f(x)$ $\Rightarrow \Delta \nabla = \Delta - \nabla$ $4. \qquad \frac{\Delta}{\nabla} - \frac{\nabla}{\Delta} = \Delta + \nabla$

Proof

 $\frac{\Delta}{\nabla} - \frac{\nabla}{\Delta} = \frac{\Delta^2 - \nabla^2}{\Delta \cdot \nabla} = \frac{(\Delta - \nabla) \cdot (\Delta + \nabla)}{\Delta - \nabla} = \Delta + \nabla$ 5. $(1 + \Delta)(1 - \nabla) = 1$

Proof

 $(1 + \Delta)(1 - \nabla)$ = 1 - \nabla + \Delta - \Delta. \nabla = 1 - \nabla + \Delta - (\Delta - \nabla) = 1 6. \nabla = 1 - \mathbf{E}^{-1} (Dec-13, Dec-14)

Proof

$$1 - E^{-1} = 1 - (1 + \Delta)^{-1} = 1 - \frac{1}{1 + \Delta}$$
$$= \frac{1 + \Delta - 1}{1 + \Delta} = \frac{\Delta}{1 + \Delta} = \frac{E\nabla}{E} = \nabla$$

7. $E = e^{hD}$ (Dec-15)

Proof

$$Ef(x) = f(x + h) = f(x) + hf'(X) + \frac{h^2}{2!}f''(x) + \cdots$$
(By Taylor's expansion)
$$= f(x) + hDf(X) + \frac{h^2}{2!}D^2f(x) + \cdots$$
$$= \left[1 + hD + \frac{h^2}{2!}D^2 + \cdots\right]f(x)$$
$$\Rightarrow Ef(x) = e^{hD}f(x) \Rightarrow E = e^{hD}$$
8. $\Delta = e^{hD} - 1$ OR $hD = \log(1 + \Delta)$ (Dec-14, Dec-15)

Proof

We Know that, $E = e^{hD}$. Taking $E = 1 + \Delta \Longrightarrow \Delta = e^{hD} - 1 \Longrightarrow hD = \log(1 + \Delta)$

Newton's Forward Difference Formula

- ✓ If data are $(x_0, y_0), (x_1, y_1)(x_2, y_2), ..., (x_n, y_n)$
- ✓ $x_0, x_1, x_2, ..., x_n$ are equally spaced then.

$$f(x) = \mathbf{y} = y_0 + p\Delta y_0 + \frac{p(p-1)}{2!}\Delta^2 y_0 + \frac{p(p-1)(p-2)}{3!}\Delta^3 y_0 + \dots; \ p = \frac{x - x_0}{h}$$

x	$\mathbf{f}(\mathbf{x}) = \mathbf{y}$	$\Delta \mathbf{f}(\mathbf{x})$	$\Delta^2 \mathbf{f}(\mathbf{x})$	$\Delta^3 \mathbf{f}(\mathbf{x})$	$\Delta^4 \mathbf{f}(\mathbf{x})$
x ₀	y ₀				
		Δy ₀			
x ₁	y ₁		$\Delta^2 y_0$		
		Δy_1		$\Delta^3 y_0$	
x ₂	y ₂		$\Delta^2 y_1$		$\Delta^4 y_0$
		Δy_2		$\Delta^3 y_1$	
x ₃	y ₃		$\Delta^2 y_2$		
		Δy_3			
x4	y 4				

Плс	10126-1				1 . 1 .	.1	
		Construct New		linterpolation	polynomial fo	r the	
		following data					
		X	4	6	8	10	
		Λ	т	0	0	10	
С	Que 1.	Y	1	3	8	16	
	C						
		Use it to find t	he value of y fe	or $x = 5$.			
				[v	$f(\mathbf{x}) = 3x^2 - 22x + 3x^2 - 2x^2 - 3x^2 - 3x^2 - 2x^2 - 3x^2 - 2x^2 - 3x^2 - 3x^$	$\frac{-48}{3}$, y(5) = $\frac{13}{8}$	
				Ľ	8	,,,(0) 8]	
		Find sin 52 ⁰ u	sing the follow	ving values.			
		sin 45°	sin 50°	sin 55°	sin 60°		Nov-11
C	Que 2.	0.7071	0.7660	0.8192	0.8660		NOV-11
						[0 . 7880]	
		Use Newton's	forward differ	ence method t	o find the app	roximate	
		value of f(2.3)	from the follo	wing data.			
Н	Que 3.	Х	2	4	6	8	Dec-13
	2	f(x)	4.2	8.2	12.2	16.2	
						[4.8]	
		Use Newton's	forward differ	ence method t	o find the app	roximate value	
		of f(1.3) from	the following	data.			
			1	2	2		
Н	Que 4.	X	1	2	3	4	Jun-13
	L	f(x)	1.1	4.2	9.3	16.4	
						[1 02]	
						[1.82]	
		Using Newton	's forward form	mula , find the	value off(1.6)	,if	
		X	1	1.4	1.8	2.2	
T	0 F		I	1.7	1.0	2.2	Jun-11
Т	Que 5.	f(x)	3.49	4.82	5.96	6.5	-
						[5.4394]	
						· 1	

			Determine the polynomial by Newton's forward difference formula from the following table.									
Н	Que 6.	X	0	1	2		3	4	5	Jun-12		
	L	У	-10	-8	-	8 -	-4	10	40			
							[x ³	$3^{3}-4x^{2}$	+ 5x – 10]			
		Using Ne f(218),if		orward ir	nterpolat	ion form	ula ,find	the value	e of			
Т	Que 7.	X	100	150	200	250	300	350	400	Jun -14		
		f(x)	10.63	13.03	15.04	16.81	18.42	19.90	21.27			
				I					[15.47]			

Newton's Backward Difference Formula

- ✓ If data are $(x_0, y_0), (x_1, y_1)(x_2, y_2), ..., (x_n, y_n)$.
- \checkmark x₀, x₁, x₂, ..., x_n are equally spaced then.

$$f(x) = \mathbf{y} = y_n + p\nabla y_n + \frac{p(p+1)}{2!}\nabla^2 y_n + \frac{p(p+1)(p+2)}{3!}\nabla^3 y_n + \dots; \ p = \frac{x - x_n}{h}$$

x	$\mathbf{f}(\mathbf{x}) = \mathbf{y}$	$\nabla f(\mathbf{x})$	$\nabla^2 f(x)$	$\nabla^3 f(x)$	$\nabla^4 \mathbf{f}(\mathbf{x})$
x ₀	y ₀				
		∇y_1			
x ₁	y ₁		$\nabla^2 y_2$		
		∇y_2		$\nabla^3 y_3$	
x ₂	y ₂		$\nabla^2 y_3$		$ abla^4 y_4$
		∇y_3		$\nabla^3 y_4$	
x ₃	y ₃		$\nabla^2 y_4$		
		∇y_4			
x ₄	У4				

									-			
		The area of ci	rcle of di	iameter	d is give	en by						
		d	80	85		90	95		100			
с	Que 1.	A	5026	567	4	6361	7088	3 7	7854			
	Que I.	Use suitable i Calculate the	_	tion to fi	ind area	of circl	e of dian	neter 98	3. Also			
		[A =										
		Find the cubic polynomial which takes the following values :										
Н	Que 2.	y(0) = 1, y(1))=0,y(2)	2) = 1,a	nd y(3)	= 10.H	ence, ob	tain y(4).			
					[y ($\mathbf{x}) = \mathbf{x}^3$	$-2x^{2} +$	1, y(4) = 33]			
		Consider follo	onsider following tabular values									
		X	50	100	15	50	200	25	0			
Н	Que 3.	Y	618	724	80)5	906	103	32	Jun-12 Dec-15		
		Determiney(3	300).									
								[[1, 148]			
		The population for the year 1		town is	given b	elow. Es	timate t	he popu	lation			
		year	1891	190	1	1911	1921	. 1	931			
Т	Que 4.	Populati on in thousand	46	66		81	93	1	101	May-15		
				·	·			[96	. 8368]			
		horizon for th	The following table gives distance (in nautical miles) of the visible horizon for the heights (in feet) above earth's surface. Find the values of y when $x = 390$ feet.									
Т	Que 5.	Height(x)	100	150	200	250	300	350	400	Dec-15		
		Distance(y)	10.63	13.03	15.04	16.81	18.42	19.90	21.47	200 10		
			1	<u> </u>		1	1	[2	1.004]			
L	1											

		E	. 11			16					
		From the formaturing a		-		-		-		33	
					ages, es					55.	
		Age	4	5	50	55	60	65			May-15
H	Que 6.	Premium	114	04	96.16	83.32	74.48	68.4			May-15
		(in \$)	114	.04	90.10	03.32	/4.40	00.40	5		
									[70.5	5852]	
		Compute f	$(\mathbf{x}) = \mathbf{e}$	e ^x at	x = 0.0	2 and x	= 0.38	Using su	uitable		
		interpolati						-			
		X 0.0)	0.1	0.	2	0.3	0.4			
H	Que 7.										
		$\int f(x) = 1.0$	000	1.10)52 1.	2214	1.3499	1.491	.8		
								[1	. 0202, 1.4	623]	
		From the fe	ollowii	ng tal	ble, find	P wher	t = 142	⁰ c and	175 ⁰ c .us	ing	
		appropriat	appropriate Newton's interpolation formula.								
		Temp. t ^o (C 14	40	150	160	170	180	1		Dec 14
Т	Que 8.	Pressure	D 26	85	4854	6302	8076	1022	5		Dec-14
		Flessure	50	05						_	
					[P ₁₄₂	$_{2^{\circ}} = 389$	98.6688	B; P _{175°}	= 9100.4	844]	Dec-14 May-15
		The population of the town is given below. Estimate the population									
		for the year 1895 and 1930 using suitable interpolation.									
		year	1	891	1901	1911	l 1922	l 193	31		
		Populatio	n								Mav-15
C	Que 9.	in		46	66	81	93	10	1		,
		thousand	ł								
								-	1895 = 54		
						lpopula	ation of	year 1	930 = 10	0.47]	
		Compute v		•	,	•) using s	uitable	interpolati	ion	
		formula for	the fo	DIIOW	ing data	1:					
Н	Que 10.	X	0.10		0.15	0.20	0 0	.25	0.30		Dec-15
	2	f(x) 0.	1003	0	.1511	0.202	27 0.2	2553	0.3093		
					[1	[(0,12)	= 0.12	05,f(0.	(40) = 0.4	241]	
					Ľ			, - (0)]	

		Compute	Compute $\cosh(0.56)$ & $\cosh(0.76)$ from the following table.								
		X	0.5	0.6	0.7	0.8		Nov-10			
T	Que 11.	cosh x	1.127626	1.185465	1.255169	1.33743	5	Jun-10			
						[1.16	6095, 1. 30297]				
		Using Nev	wton's suita	ble formula	a , find the v	value of f(2	1.6) & f(2),if				
		X	1	1.4	1.8	2.2		Jun-11			
C	Que 12.	f(x)	3.49	4.82	5.96	6.5		Juli II			
			[5.43		4394, 6. 3306]						

Gauss's Forward Difference Formula

- ✓ If data are $(x_{-n}, y_{-n}), ..., (x_{-2}, y_{-2}), (x_{-1}, y_{-1}), (x_0, y_0), (x_1, y_1), ..., (x_n, y_n).$
- \checkmark $x_0, x_1, x_2, \dots, x_n$ are equally spaced then.

$$f(x) = y = y_0 + p\Delta y_0 + \frac{p(p-1)}{2!}\Delta^2 y_{-1} + \frac{(p+1)p(p-1)}{3!}\Delta^3 y_{-1} + \dots; \ p = \frac{x - x_0}{h}$$

x	f(x) = y	$\Delta f(x)$	$\Delta^2 \boldsymbol{f}(\boldsymbol{x})$	$\Delta^3 f(x)$	$\Delta^4 f(x)$
A	$\mathbf{J}(\mathbf{x}) = \mathbf{y}$	$\Delta \mathbf{j}(\mathbf{x})$	$\Delta \mathbf{j}(\mathbf{x})$	$\Delta \mathbf{j}(\mathbf{x})$	$\Delta \mathbf{j}(\mathbf{x})$
<i>x</i> ₋₂	<i>y</i> ₋₂				
		Δy_{-2}			
<i>x</i> ₋₁	<i>y</i> ₋₁		$\Delta^2 y_{-2}$		
		Δy_{-1}		$\Delta^3 y_{-2}$	
<i>x</i> ₀	<i>y</i> ₀		$\Delta^2 y_{-1}$		$\Delta^4 y_{-2}$
		Δy_0		$\Delta^3 y_{-1}$	
<i>x</i> ₁	<i>y</i> ₁		$\Delta^2 y_0$		
		Δy_1			
<i>x</i> ₂	<i>y</i> ₂				

Gauss's Backward Difference Formula

- ✓ If data are $(x_{-n}, y_{-n}), ..., (x_{-2}, y_{-2}), (x_{-1}, y_{-1}), (x_0, y_0), (x_1, y_1), ..., (x_n, y_n).$
- \checkmark $x_0, x_1, x_2, \dots, x_n$ are equally spaced then.

$$f(x) = y = y_0 + p\Delta y_{-1} + \frac{(p+1)p}{2!}\Delta^2 y_{-1} + \frac{(p+1)p(p-1)}{3!}\Delta^3 y_{-2} + \dots; \ p = \frac{x - x_0}{h}$$

x	f(x) = y	$\Delta f(x)$	$\Delta^2 f(x)$	$\Delta^3 f(x)$	$\Delta^4 f(x)$
x_2	<i>Y</i> ₋₂				
		Δy_{-2}			
<i>x</i> ₋₁	\mathcal{Y}_{-1}		$\Delta^2 y_{-2}$		
		Δy_{-1}		$\Delta^3 y_{-2}$	
<i>x</i> ₀	y_0		$\Delta^2 y_{-1}$		$\Delta^4 y_{-2}$
		Δy_0		$\Delta^3 y_{-1}$	
<i>x</i> ₁	<i>y</i> ₁		$\Delta^2 y_0$		
		Δy_1			
<i>x</i> ₂	y_2				

Stirling Formula

- ✓ If data are $(x_{-n}, y_{-n}), ..., (x_{-2}, y_{-2}), (x_{-1}, y_{-1}), (x_0, y_0), (x_1, y_1), ..., (x_n, y_n).$
- \checkmark x₀, x₁, x₂, ..., x_n are equally spaced then.

$$f(x) = y = y_0 + p \left[\frac{\Delta y_0 + \Delta y_{-1}}{2} \right] + \frac{p^2}{2!} \Delta^2 y_{-1} + \frac{p(p^2 - 1^2)}{3!} \left[\frac{\Delta^3 y_{-1} + \Delta^3 y_{-2}}{2} \right] + \frac{p^2(p^2 - 1^2)}{4!} \Delta^4 y_{-2} + \frac{p(p^2 - 1^2)(p^2 - 2^2)}{5!} \left[\frac{\Delta^5 y_{-2} + \Delta^5 y_{-3}}{2} \right] + \cdots$$

Where, $p = \frac{x - x_0}{h}$

Difference	Table				r
x	$\mathbf{f}(\mathbf{x}) = \mathbf{y}$	$\Delta \mathbf{f}(\mathbf{x})$	$\Delta^2 \mathbf{f}(\mathbf{x})$	$\Delta^3 \mathbf{f}(\mathbf{x})$	$\Delta^4 \mathbf{f}(\mathbf{x})$
X ₋₂	У-2				
		Δy_{-2}			
x ₋₁	У ₋₁		$\Delta^2 y_{-2}$		
		Δy_{-1}		$\Delta^3 y_{-2}$	
x ₀	y ₀		$\Delta^2 y_{-1}$		$\Delta^4 y_{-2}$
		Δy_0		$\Delta^3 y_{-1}$	
x ₁	y ₁		$\Delta^2 y_0$		
		Δy_1			
x ₂	y ₂				

		Apply Stirlin	g's formula	a to comj	pute y(3	5) from th	ne followi	ing table.		
		X	20	30		40	50			
H	Que 1.	Y	512	439)	346	243		Jun-11	
								[394.69]		
Н	Que 2.	Let f(40) = Stirling's Me			f(60) =	436, f(70	-	use 65.0625]	Jun-12	
		Using Stirling	g's formula	find y_3	5 by usin	g given d	ata.			
		X	10	20	30	40	50]		
C	Que 3.	Y	600	512	439	346	243	-		
		[395.430]								

Newton's Divided Difference

Newton's Divided Difference Formula

$$f(x) = y = y_0 + (x - x_0)[x_0, x_1] + (x - x_0)(x - x_1)[x_0, x_1, x_2] + \cdots$$

Divided Difference Table

x	$\mathbf{f}(\mathbf{x}) = \mathbf{y}$	$\oint \mathbf{f}(\mathbf{x})$	$\Delta^2 f(x)$	$A^{3}f(x)$	$A^4 f(x)$
x ₀	Уо				
		$ \begin{array}{c} $			
x ₁	У1		$ \begin{array}{l} & \overset{4}{}^{2}y_{0} \\ = \frac{\overset{4}{}y_{1} - \overset{4}{}y_{0}}{x_{2} - x_{0}} \end{array} $		
		$ \begin{array}{c} $		$ \begin{array}{l} & \overset{4}{}^{3}y_{0} \\ = \frac{\overset{2}{} \frac{4}{}^{2}y_{1} - \overset{2}{} \frac{4}{}^{2}y_{0}}{x_{3} - x_{0}} \end{array} $	
x ₂	У2		$ \begin{array}{r} & \overset{4}{}^{2}y_{1} \\ = \frac{\overset{4}{}y_{2} - \overset{4}{}y_{1}}{x_{3} - x_{1}} \end{array} $		$ \begin{array}{r} & \overset{A}{}^{4}y_{0} \\ = \frac{\overset{A}{}^{3}y_{1} - \overset{A}{}^{3}y_{0}}{x_{4} - x_{0}} \\ \end{array} $
		$ \begin{array}{l} $		$ \begin{array}{l} & \overset{4}{}^{3}y_{1} \\ = \frac{\overset{2}{} \overset{4}{}^{2}y_{2} - \overset{2}{} \overset{4}{}^{2}y_{1}}{x_{4} - x_{1}} \\ \end{array} $	
x ₃	У3		$ \begin{array}{l} & \overset{4}{}^{2}y_{2} \\ = \frac{4}{} \underbrace{y_{3}}_{x_{4}} - \underbrace{y_{2}}_{x_{4}} \\ \end{array} $		
		$ \begin{array}{c} $			
x4	У ₄				

С	Que 1.	Define Divid	ed diff- inte	erpolation fo	rmula.			Nov-10				
С	Que 2.	If $f(x) = \frac{1}{x}$,	înd the divi	ded differer	nces [<i>a, b</i>] an		$\frac{1}{ab}$ and $\frac{1}{abc}$	Jun-10				
н	Que 3.	$\begin{array}{ c c c } x \\ \hline f(x) \end{array}$	$f(x) = 1 + 4(x - 1) - \frac{2}{3}(x^2 - 3x + 2) + \frac{1}{14}(x^3 - 10x^2 + 23x - 14)$									
С	Que 4.	stratum are: Depth(m) Stress(ksf)	Stress(ksf)0.30.60.40.90.7Use Newton's divided difference formula to compute the stress at 4.5m									
T	Que 5.					$\begin{bmatrix} x_0, x_{1,} x_2 \end{bmatrix}$ us in the followin 11 2.397895	sing Newton's ng data [2. 251284]	Dec-13				
Т	Que 6.				e f (10.5) fro	$\frac{1}{2} \begin{bmatrix} x_0 & x_1 & x_2 \end{bmatrix}$ us om the follow 17 $\frac{1}{2}$	Jun-13					

		Compute <i>f</i> difference		ne followin	ıg valı	ie usinį	g New	rton's Divid	ed	
С	Que 7.	x	4	5	7		10	11	13	Nov-11
	Que 7.	f(x)	48	100	29	4	900	1210	2028	Dec-11
									[448]	
		Compute <i>f</i> difference.	(9.2) from	the follow	ving va	alue usii	ng Ne	wton's divi	ded	
			0		0	0.5	-	11.0	Г	Jun-10
Н	Que 8.	<i>x</i>	8		9	9.5		11.0		Nov-10 Dec-15
		f(x)	2.0794	42 2.19	7225	2.251	292	2.397895		Dec-13
									[2.219297]	
		Given follo Compute f	-	-	-	-		$x^3 - 5x^2 + 4$ e formula.	4x + 1.	
		x	0 1			4		7		
H	Que 9.		1 3			т 129		13		
		f(x)		9 49		129	0.	15	[1 021]	
									[1.831]	
		Evaluate f	(9), using	Newton's	divide	d differe	ence f	rom the fol	lowing data	
		x	5	7		11		13	17	
C	Que 10.	f(x)	150	39	2	1452	2	2366	5202	Jun-14
									[810]	
		Construct I	Divided dif	fference ta	ble for	• the dat	ta give	en below		
		x	-4	-1	0	2		5		
Т	Que 11.	f(x)	1245	33	5	9		1335	-	May-15
				<u> </u>	[4	f(x) =	= 3 01	$r[x_0, x_1, x_2]$	$[\mathbf{x}_3, \mathbf{x}_4] = 3$	

	Que 12.	Using Newton's divided difference formula find f(3) from the following table.							
н		X	-1	2	4	5	Dec-15		
		F(x)	-5	13	255	625			
						[53.68]			

Lagrange's Interpolation Formula

- ✓ If data are $(x_0, y_0), (x_1, y_1)(x_2, y_2), ..., (x_n, y_n)$.
- ✓ $x_0, x_1, x_2, ..., x_n$ are unequally spaced then.

$$y = f(x) = \frac{(x - x_1)(x - x_2) \dots (x - x_n)}{(x_0 - x_1)(x_0 - x_2) \dots (x_0 - x_n)} y_0 + \frac{(x - x_0)(x - x_2) \dots (x - x_n)}{(x_1 - x_0)(x_1 - x_2) \dots (x_1 - x_n)} y_1 + \dots + \frac{(x - x_0)(x - x_1) \dots (x - x_{n-1})}{(x_n - x_0)(x_n - x_1) \dots (x_n - x_{n-1})} y_n$$

Lagrange's Inverse Interpolation Formula

- ✓ If data are $(x_0, y_0), (x_1, y_1)(x_2, y_2), ..., (x_n, y_n)$.
- ✓ $x_0, x_1, x_2, ..., x_n$ are unequally spaced then.

$$\begin{split} \mathbf{x} &= \frac{(y-y_1)(y-y_2)\dots(y-y_n)}{(y_0-y_1)(y_0-y_2)\dots(y_0-y_n)}\mathbf{x}_0 + \frac{(y-y_0)(y-y_2)\dots(y-y_n)}{(y_1-y_0)(y_1-y_2)\dots(y_1-y_n)}\mathbf{x}_1 + \cdots \\ &+ \frac{(y-y_0)(y-y_1)\dots(y-y_{n-1})}{(y_n-y_0)(y_n-y_1)\dots(y_n-y_{n-1})}\mathbf{x}_n \end{split}$$

	Que 1.	Determine the interpolating polynomial of degree three using Lagrange's interpolation for the table below.								
C		X	-1	0	1	3	Jun-10			
		у	2	1	0	-1				
			I	I	$\left[\mathbf{P}(\mathbf{x}) = \frac{1}{24}\right]$	$x^3 - 25x + 24$)			

PAGE | 54

			ratic Lagrange terpolation me	-	-					
н	Que 2.	X	-1	0	1	3	Jun-13			
	Quo 21	f(x)	2	1	0	-1				
						[-0.75]				
		Find the Lagr data. Also, Co	ange's interpo mpute f(4) .	lating polynor	nial from the	following				
н	Que 3.	X	2	3	5	7	Dec-12			
	Que oi	f(x)	0.1506	0.3001	0.4517	0.6259				
			1			[0.3896]				
			ratic Lagrange terpolation mo	-	-					
С	Que 4.	X	9	9.5	11		Dec-13			
C	4 -0	f(x)	2.1972	2.2513	2.3979					
						[2.2192]				
		Using Lagrange's formula of fit a polynomial to the data.								
		X	-1	0	2	3				
Т	0110 5	у	8	3	1	12	DEC-11			
1	Que 5.	And hence fir	nd y(2).							
		$y(x) = \frac{1}{3}[2x^3 + 2x^2 - 15x + 9], y(2) = 1$								
		Find the Lagr data.	ange's interpo	lating polynor	nial from the	following				
		X	0	1	4	5	Nov-10			
Т	Que 6.	У	1	3	24	39				
				$\left[\mathbf{P}(\mathbf{x}) = \frac{1}{20}\right]$	$\overline{0}^{[3x^3+10x^2]}$	+27x+20]				

		From the f	ollowing	data find	value of x	when y	= f(x) =	= 0.3	9.		
		X	20)	25		30				Dec-15
C	Que 7.	Y=f(x)	0.	342	0.42	0.423)0			Dec-13
			I					[x =	22.84	1]	
	Que 8.	Find the L data. Find		-	• • •	nomial	from the	follo	owing		
C		Х	2	14	45	2	46		47		
		f(x)	13	3.40	13.16	12	2.93	1	2.68		
							I		[45.6	9]	
	Que 9.	Apply Lag	ange's fo	rmula to t	find a roo	t of the o	equation	f(x)	= 0.		
_		X	3	30	34		38		42		
Т		f(x)	_	-30	-13		3		18		
							L		[37.2	3]	
		Find the La data. And I		_	ting poly	nomial f	rom the	follo	wing		
Н	Que 10.	X	5	7		11	13		17		Jun -14
	L	f(x)	150	39	2 1	452	2366		5202		
									[81	0]	
		Find y(12) values.	by Lagra	nge's Inte	erpolatior	formul	a from fo	ollow	ring		
Т	Que 11.	X	11	13	14	18	2	0	23		Dec-14
	Que 11.	у	25	47	68	82	10)2	124		
		- <u>- </u>		L		-	[y ((12)	= 26.4	1]	

		Ry Lagra	nge's interpolatio	n formula Ob	tain the value	of $f(\mathbf{x}) = 85$					
		X	2	5	8	14					
C	Que 12.	у	94.8	97.9	81.3	68.7	Dec-15				
						[4.6141]					
	Que 13.		Lagrange's interpoor of find f(2).	olation polyno	omial from the	e following					
H			0 1 4	5			Dec-15				
		f(x)	1 3 24	39		[6.9]					
		Determine the interpolating polynomial of degree three by using Lagrange's interpolation for the following data. Also find f(2).									
Т	Que 14.	X	-1	0	1	3	Dec-15				
		F(x)	2	1	0	-1					
						f(2) = -0.75]					
С	Que 15.		Express the function $\frac{3x^2 - 12x + 11}{(x-1)(x-2)(x-3)}$ as a sum of partial fractions, using Lagrange's Formula. $\left[\frac{1}{x-1} + \frac{1}{x-2} + \frac{1}{x-3}\right]$								
н	Que 16.	Express t using Lag	Express the function $\frac{2x^2+3x+5}{(x-1)(x+2)(x-2)}$ as a sum of partial fractions, using Lagrange's formula. $\left[\frac{-10}{3(x-1)} + \frac{7}{12(x+2)} + \frac{19}{4(x-2)}\right]$								

SR. NO.	TOPIC NAME
1	Newton-Cotes Formula
1	Trapezoidal Rule
2	Simpson's 1/3 – Rule
3	Simpson's 3/8 – Rule
4	Weddle's Rule
5	Gaussian Integration(Gaussian Quadrature)

Newton-Cotes Formula

$$\int_{a}^{b} f(x)dx = h \left[ny_{0} + n^{2} \Delta y_{0} + \left(\frac{n^{3}}{6} - \frac{n^{2}}{4}\right) \Delta^{2} y_{0} + \left(\frac{n^{4}}{24} + \frac{n^{3}}{6} - \frac{n^{2}}{4}\right) \Delta^{3} y_{0} + \cdots \right]$$
Where, $h = \frac{b-a}{n}$

Trapezoidal Rule (If n is a multiple of 1.)

$$\int_{a}^{b} f(x)dx = \frac{h}{2}[(y_{0} + y_{n}) + 2(y_{1} + y_{2} + \dots + y_{n-1})]; h = \frac{b-a}{n}$$

Т	Que.1	State Trapezoidal rule with $n = 10$ and evaluate $\int_0^1 e^{-x^2} dx$. [0.7462]	Nov-10							
С	Que.2	Write Trapezoidal rule for numerical integration.	Jun-13							
С	Que.3	State Trapezoidal rule with $n = 10$ and evaluate $\int_0^1 e^x dx$. [1.7197]	Jun-11							
н	Que.4	State Trapezoidal rule with $n = 10$ and using it, evaluate $\int_0^1 2e^x dx$. [3.4394]	Dec-14							
т	Que.5	Evaluate $\int_0^1 \frac{dx}{1+x^2}$ using trapezoidal rule with h = 0.2. [0.7837]								
н	Que.6	Evaluate $\int_0^1 \frac{dx}{1+x^2}$ using trapezoidal rule. [0.7854]								
C	Que.7	Given the data below, find the isothermal work done on the gas as itis compressed from $v_1 = 22L$ to $v_2 = 2L$ use $w = -\int_{v_1}^{v_2} P dv$ V,L27121722P(atm.)12.203.492.041.441.11Use Trapezoidal rule.	Dec-12							
н	Que.8	[08.123]Consider the following tabular values. x 2525.125.225.325.425.525.6 $y = f(x)$ 3.2053.2173.2323.2453.2563.2683.28Determine the area bounded by the given curve and X-axis between $x = 25$ to $x = 25.6$ by Trapezoidal rule.[1.9461]	Jun -12							
н	Que.9	Evaluate $\int_{0}^{6} \frac{dx}{1+x^{2}} dx$ by using Trapezoidal rule taking $h = 1$. [1.4108]	Jun -14							

7. Numerical Integration

PAGE 59

		Evaluate $\int_0^{\pi} \sin x dx$, taking n = 10.	Dec-15
C	Que.10	[1.7182]	
		Evaluate $\int_0^1 \frac{dx}{1+x^2}$ using Trapezoidal rule taking $h = 0.2$	Dec-15
H	Que.11	[0.7837]	Dec-15
		Evaluate $\int_{1}^{5} \log_{10} x dx$ taking 8 subintervals by Trapezoidal rule.	D 15
Т	Que.12	[1.7505]	Dec-15

Simpson's 1/3- Rule (If n is a multiple of 2.)

$$\int_{a}^{b} f(x)dx = \frac{h}{3}[(y_{0} + y_{n}) + 4(y_{1} + y_{3} + \dots + y_{n-1}) + 2(y_{2} + y_{4} + \dots + y_{n-2})]$$

$$; h = \frac{b-a}{n}$$

С	Que.1	Evaluate approxin	0 IIV			ng Simps	son's $\frac{1}{3}$ ru	lle.Hence	Obtain an [1.9588]	Jun-11		
Т	Que.2	simpson'	Derive Trapezoidal rule and Evaluate $\int_{0.5}^{1.3} e^{x^2} dx$ by using simpson's $\frac{1}{3}^{rd}$ rule. [2.0762]									
н	Que.3	Using Sir Take h = X f(x)		1	evaluate .3 69	$f_1^{2.5} f(x)$ 1.6 2.56)dx from 1.9 3.61	the follov 2.2 4.84	ving data. 2.5 6.25 [4 . 325]	Jun-13		
н	Que.4	Using Sin h = 1. x f(x)	npson's 0 1	¹ / ₃ rule 1 0.5	evalua 2 0.333	3	4	following 5 0.1666	data. 6 0.1428 [1 . 9586]	Dec-13		

7. Numerical Integration

		Thom	and i	motor	norco	cond	ofaca	r tooo	onda	oftor	it ata	rto io		
				v meter e follow	-		01 d Cd	1,1500	onus	alter	It Sta	115,15	•	
		t C		24	36	48	60	72	84	96	108	120]	
						21							_	
		v C	3.6	10.08	18.90	21. 6	18.54	10.26	4.5	4.5	5.4	9		Jun-10
Т	Que.5													Dec-10
				son's 1,	/3 rule	e, find	the dis	tance t	ravell	ed by	y the	car in	l	
		2minu	ites.											
											[1]	222.5	56]	
		A riv	or ic O	0 motor	ruido	Tho d	onth 'd	in mot	torga	ta di	stand	0.17		
				0 meter n one b			-						ġ	
-				ss-secti					4				_	
С	Que.6	x	0	10	20	30	40	50	60	,	70	80		Dec-11 May-15
		d	0	4	7	9	12	15	14	8	}	3		May-15
													10]	
		Consider the following tabular values. Find $\int_{10}^{16} y dx$ by Simpson $\frac{1}{3}$ rule.									le.			
Т	Que.7	X	1		11	12	13		4	15		16		Jun-12
		y 1.02 0.94 0.89 0.79 0.71 0.62 0.55 [4.7233]												
			c	5	$2\sqrt{\frac{3}{2}}$		<u></u>	. 1					55]	
С	Que.8	Evaluate $\int_{-2}^{6} (1 + x^2)^{\frac{3}{2}} dx$ using Simpson's $\frac{1}{3}$ rule with taking 6									Dec-12			
U	Que.0	subintervals. Use four digits after decimal point for calculation. [360. 1830]									DCC 12			
		Evalı	iate f	$5 \frac{1}{1+x^2} d$	x by us	ing Sii	npson'	s ¹ / ₋ rule	takin	g h =			~~]	
Н	Que.9		J0	1+x ²	, , , , , , , , , , , , , , , , , , ,	0 -	F	3		0		1.360	62]	Jun-14
				evoluti							e line		-	
				a curve	throug	h the	points	with th	e foll	owin	g			
С	Que.10	X	dinate	<u>s.</u> 0	0.2	5	0.5	0).75	1	1			May-15
U	Queiro	Y		1		896	0.95).9089).841	5		May-15
		Estimate the volume of the solid formed using Simpson's rule.												
		[1.1059] Evaluate $\int_{0}^{\pi} \sin x dx$, Take n = 10												
	0	Evalua	ate J ₀	SIII X UX	, rake	n = 10	J							Dec 15
Н	Que.11										[1.718	82]	Dec-15

PAGE | 60

n

Simpson's 3/8- Rule (If n is a multiple of 3.)

$$\int_{a}^{b} f(x)dx = \frac{3h}{8} [(y_{0} + y_{n}) + 2(y_{3} + y_{6} + \dots + y_{n-3}) + 3(y_{1} + y_{2} + y_{4} + y_{5} + \dots + y_{n-2} + y_{n-1})]$$

; h = $\frac{b - a}{2}$

С	Que.1	Write the Simpson's $\frac{3}{8}$ rule for numerical integration.	Dec-13
Т	Que.2	Evaluate $\int_0^3 \frac{dx}{1+x}$ with n = 6 by using Simpson's $\frac{3}{8}$ rule and hence calculate $\log_e 2$.Estimate the bound of error involved in the process. [1. 3888, 0. 0563]	Jun-10 Jun-14
Н	Que.3	State Simpson's $\frac{3}{8}$ rule and evaluate $\int_0^1 \frac{1}{1+x^2} dx$ taking $h = \frac{1}{6}$ and also by Simpson's $\frac{1}{3}$ rule taking $h = \frac{1}{4}$. [0.7854]	Dec-10 May-15 Dec-15
С	Que.4	Evaluate the integral $\int_{4}^{5.2} \log_{e} x dx$ using Simpson's $\frac{3}{8}$ rule. [1.8278]	Dec-11
С	Que.5	Dividing the range into 10 equal part, evaluate $\int_0^{\pi} \sin x dx by$ simpson's $\frac{3}{8}$ rule. [1.99]	May-15
Т	Que.6	Evaluate $\int_0^1 \frac{dx}{1+x}$ using Simpson's $\frac{3}{8}$ rule. [0.6937]	Dec-15

Weddle's Rule (If n is multiple of 6.)

$$\int_{a}^{b} f(x) dx = \frac{3h}{10} \begin{bmatrix} (y_{0} + y_{n}) + (5y_{1} + y_{2} + 6y_{3} + y_{4} + 5y_{5}) + (2y_{6} + 5y_{7} + y_{8} + 6y_{9} + y_{10} + 5y_{11}) \\ + \dots + (2y_{n-6} + 5y_{n-5} + y_{n-4} + 6y_{n-3} + y_{n-2} + 5y_{n-1}) \end{bmatrix}$$

; h =
$$\frac{b-a}{n}$$

		Conside	r the foll	owing ta	abular va	lues.				
		X	25	25.1	25.2	25.3	25.4	25.5	25.6	
С	Que.1	f(x)	3.205	3.217	3.232	3.245	3.256	3.268	3.28	Jun -12
	Queir	Determi	ne the a	rea bour	ded by t	he giver	i curve a	nd X-axi	S	
		betweer	n x = 25	5 to x =	25 .6 by	Weddle	's rule.			
								[1	l. 9460]	
		Conside	r the foll	owing ta	abular va	lues. Fir	$d\int_{10}^{16} yd$	x by We	ddle's	
		rule.					10			
Н	Que.2	X	10	11	12	13	14	15	16	Jun -12
		у	1.02	0.94	0.89	0.79	0.71	0.62	0.55	
			1	1	<u> </u>	<u> </u>	<u> </u>	<u> </u>	[4.713]	

Gaussian integration (Gaussian Quadrature)

$$\int_{a}^{b} f(x)dx = \frac{b-a}{2} (w_{1}f(y_{1}) + w_{2}f(y_{2}) + \dots + w_{n}f(y_{n})), \text{ Where } x = \frac{b-a}{2}y + \frac{b+a}{2}$$

Table

n	Wi	\mathcal{Y}_i	n	Wi	\mathcal{Y}_i
1	2.0000	0.0000		0.65214	0.33998
2	1.0000	-0.57735		0.34785	0.86114
	1.0000	0.57735	5	0.23693	-0.90618
3	0.55555	-0.77460		0.47863	-0.53847
	0.88889	0.00000		0.56889	0.00000
	0.55555	0.77460		0.47863	0.53847
4	0.34785	-0.86114		0.23693	0.90618
	0.65214	-0.33998			J

You can also use following formula to find Gaussian Quadrature.

✓ One Point Gaussian Quadrature Formula (n = 1)

$$\int_{-1}^{1} f(x) dx = 2f(0)$$

 \checkmark Two Point Gaussian Quadrature Formula (n = 2)

$$\int_{-1}^{1} f(x) dx = f\left(-\frac{1}{\sqrt{3}}\right) + f\left(\frac{1}{\sqrt{3}}\right)$$

✓ Three Point Gaussian Quadrature Formula (n = 3)

$$\int_{-1}^{1} f(x) dx = \frac{8}{9} f(0) + \frac{5}{9} \left(f\left(-\sqrt{\frac{3}{5}}\right) + f\left(\sqrt{\frac{3}{5}}\right) \right)$$

,

		Γ f dx f dx f dx f dx f dx f dx dx dx dx dx dx dx dx	
		Evaluate $\int_{-1}^{1} \frac{dx}{1+x^2}$ by using Gaussian quadrature formula with one	
С	Que.1	point, two points & three points.	Dec-15
	Quoi	[2, 1. 5, 1. 58333]	
		[_, 1.0, 1.00000]	
		Evaluate $I = \int_0^1 \frac{dt}{1+t}$ by Gaussian formula with one point, two-point	Dec 11
		and three- points.	Dec-11
C	Que.2	-	Dec-15
		[0. 66667, 0. 69231, 0. 69312]	
		Evaluate $\int_0^1 e^{-x^2} dx$ by Gauss integration formula with $n = 3$.	Jun-10
Т	Que.3	50 · · · · · · · · · · · · · · · · · · ·	Dec-14
	Queis	[0.74681]	May-15
		Evaluate $\int_{1}^{3} sinx dx$ using Gauss Quadrature of five points. Compare	
		the result with analytic value.	Nov-10
Т	Que.4		100-10
		[1. 53031, 1. 53029]	
		Evaluate integral $\int_{-2}^{6} (1+x^2)^{3/2} dx$ by the Gaussian formula for	
		n = 3.	Dec-12
H	Que.5		200 12
		[358.69236]	

The matrix notation for following linear system of equation is as follow:

Here A =
$$\begin{bmatrix} a_{11} & a_{12} & a_{13} & & a_{1n} \\ a_{21} & a_{22} & a_{23} & \cdots & a_{2n} \\ a_{31} & a_{32} & a_{33} & & a_{3n} \\ \vdots & & \ddots & \vdots \\ a_{m1} & a_{m2} & a_{m3} & \cdots & a_{mn} \end{bmatrix} B = \begin{bmatrix} b_1 \\ b_2 \\ b_3 \\ \vdots \\ b_m \end{bmatrix} \text{ and } X = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ \vdots \\ b_m \end{bmatrix}$$

The above linear system is expressed in the matrix form as $A \cdot X = B$.

Elementary Transformation or Operation on a Matrix

	Operation	Meaning
~	$R_{ij} \text{ or } R_i \leftrightarrow R_j$	Interchange of i th and j th rows
~	$\mathbf{k} \cdot \mathbf{R}_{\mathbf{i}}$	Multiplication of all the elements of i th row by non zero scalar k.
~	$R_{ij}(k)$ or $R_j + k \cdot R_i$	Multiplication of all the elements of i^{th} row by nonzero scalar k and added into j^{th} row.

Row Echelon Form of Matrix

To convert the matrix into row echelon form follow the following steps:

- 1. Every zero row of the matrix occurs below the non zero rows.
- 2. Arrange all the rows in strictly decreasing order.
- 3. Make all the entries zero below the leading (first non zero entry of the row) element of 1st row.
- 4. Repeat step-3 for each row.

Reduced Row Echelon Form of Matrix:

To convert the matrix into reduced row echelon form follow the following steps:

- 1. Convert given matrix into row echelon form.
- 2. Make all leading elements 1(one).
- 3. Make all the entries zero above the leading element 1(one) of each row.

Gauss Elimination Method

To solve the given linear system using Gauss elimination method, follow the following steps:

- 1. Start with augmented matrix [A : B].
- 2. Convert matrix A into row echelon form with leading element of each row is one(1).
- 3. Apply back substitution for getting equations.
- 4. Solve the equations and find the unknown variables (i.e. solution).

Exercise-1

	Solve the following system of equations by Gauss-elimination method.				
Н	Que. 1	x + y + z = 9,2x - 3y + 4z = 13,3x + 4y + 5z = 40. [1, 3, 5]	Jun-11		
С	Que. 2	2x + y + z = 10, $3x + 2y + 3z = 18$, $x + 4y + 9z = 16$. [7, -9, 5]			
Т	Que. 3	x + 2y + z = 3,2x + 3y + 3z = 10,3x - y + 2z = 13. [2, -1, 3]			
Н	Que. 4	2x + 3y - z = 5,4x + 4y - 3z = 3,2x - 3y + 2z = 2. [1, 2, 3]			
Т	Que. 5	2x + y - z = 1,5x + 2y + 2z = -4,3x + y + z = 5. [14, -32, -5]	Dec-12		
С	Que. 6	$8y + 2z = -7,3x + 5y + 2z = 8,6x + 2y + 8z = 26.$ $[4, -1, \frac{1}{2}]$	Jun-14		
Н	Que. 7	x + 4y - z = -5, x + y - 6z = -12, 3x - y - z = 4. $ [2.0845, -1.1408, 1.6477]$	May-15		
Н	Que. 8	x + y + 2z = 4,3x + y - 3z = -4,2x - 3y - 5z = -5 [1,-1,2]	May-15		

Solve	Solve the following system of equations using partial pivoting by Gauss-elimination method. (With Partial Pivoting)					
С	Que. 1	$8x_{2} + 2x_{3} = -7, 3x_{1} + 5x_{2} + 2x_{3} = 8, 6x_{1} + 2x_{2} + 8x_{3} = 26.$ $\begin{bmatrix} 4, -1, \frac{1}{2} \end{bmatrix}$	Dec-10 Jun-10			
Т	Que. 2	x + y + z = 7, $3x + 3y + 4z = 24$, $2x + y + 3z = 16$. [3, 1, 3]	Nov-11 Dec-15			
н	Que. 3	$2x_1 + 2x_2 - 2x_3 = 8, -4x_1 - 2x_2 + 2x_3 = -14$ -2x_1 + 3x_2 + 9x_3 = 9. [3, 2, 1]				
Т	Que. 4	$2x_1 + 2x_2 + x_3 = 6,4x_1 + 2x_2 + 3x_3 = 4, x_1 + x_2 + x_3 = 0$ [5, 1, -6]	Jun-15 Dec-15			

Gauss Seidel Method

This is a modification of Gauss-Jacobi method. In this method we replace the approximation by the corresponding new ones as soon as they are calculated.

Consider the system of equations.

$$a_1x + b_1y + c_1z = d_1$$

 $a_2x + b_2y + c_2z = d_2$
 $a_3x + b_3y + c_3z = d_3$

Where co-efficient matrix A must be diagonally dominant,

$$\begin{aligned} |a_1| &\geq |b_1| + |c_1| \\ |b_2| &\geq |a_2| + |c_2| \\ |c_3| &\geq |a_3| + |b_3| \dots \dots (1) \end{aligned}$$

And the inequality is strictly greater than for at least one row.

Solving the system (1) for **x**, **y**, **z** respectively, we obtain

$$x = \frac{1}{a_1} (d_1 - b_1 y - c_1 z)$$

$$y = \frac{1}{b_2} (d_2 - a_2 x - c_2 z)$$

$$z = \frac{1}{c_3} (d_3 - a_3 x - b_3 y) \dots \dots (2)$$

We start with $x_0 = 0$, $y_0 = 0 \& z_0 = 0$ in equ.(2)

$$\therefore x_1 = \frac{1}{a_1} (d_1 - b_1 y_0 - c_1 z_0)$$

Now substituting $x=x_1\ \&\ z=z_0$ in the second equ. Of (2)

$$\therefore y_1 = \frac{1}{b_2} (d_2 - a_2 x_1 - c_2 z_0)$$

Now substituting $\mathbf{x} = \mathbf{x}_1 \& \mathbf{y} = \mathbf{y}_1$ in the third equ. Of (2)

$$\therefore \mathbf{z}_1 = \frac{1}{c_3} (\mathbf{d}_3 - \mathbf{a}_3 \mathbf{x}_1 - \mathbf{b}_3 \mathbf{y}_1)$$

This process is continued till the values of **x**, **y**, **z** are obtained to desired degree of accuracy.

8. Linear Algebric Equation

PAGE | 68

LACI			
С	Que. 1	Solve the following system of equations by Gauss-Seidel method. $10x_1 + x_2 + x_3 = 6$, $x_1 + 10x_2 + x_3 = 6$, $x_1 + x_2 + 10x_3 = 6$. [0.5, 0.5, 0.5]	Jun-10 Dec-15
Т	Que. 2	Use Gauss seidel method to determine roots of the following equations. $2x - y = 3$, $x + 2y + z = 3$, $-x + z = 3$. [1, -1, 4]	Jun-13
Н	Que. 3	Use Gauss seidel method to find roots of the following equations. 8x + y + z = 5, $x + 8y + z = 5$, $x + y + 8z = 5$. [0.5, 0.5, 0.5]	Dec-13 May-15
Н	Que. 4	Solve the following system of equations by Gauss-Seidel method. $10x_1 + x_2 + x_3 = 12$, $2x_1 + 10x_2 + x_3 = 13$, $2x_1 + 2x_2 + 10x_3 = 14$. [1, 1, 1]	Dec-10 Dec-15
С	Que. 5	Solve by Gauss-Seidel & Gauss-Jacobi method correct up to two decimal places. 20x + 2y + z = 30, x - 40y + 3z = -75, 2x - y + 10z = 30. [1.14, 2.13, 2.99]	Jun-11
н	Que. 6	Solve this system of linear equations using Jacobi's method in three iterations first check the co-efficient matrix of the following systems is diagonally dominant or not? 20x + y - 2z = 17, 2x - 3y + 20z = 25, 3x + 20y - z = -18 [1, -1, 1]	Dec-15
Н	Que. 7	Solve the following system of equations by Gauss-Seidel method. 20x + y - 2z = 17, 2x - 3y + 20z = 25, 3x + 20y - z = -18 [1,-1,1]	Jun-14
С	Que. 8	Solve by Gauss-Seidel method correct up to three decimal places. 2x + y + 54z = 110,27 x + 6y - z = 85,6x + 15y + 2z = 72. [2.422, 3.580, 1.881]	Nov-11
Н	Que. 9	Solve by Gauss-Seidel Method. 9x + 2y + 4z = 20, x + 10y + 4z = 6, 2x - 4y + 10z = -15. [2.74, 0.99, -1.65]	
Н	Que. 10	Solve by Gauss-Seidel method correct up to three decimal places. 10x - 5y - 2z = 3,4x - 10y + 3z = -3, x + 6y + 10z = -3. [0.342, 0.285, -0.505]	
Т	Que. 11	Check whether the following system is diagonally dominant or not. If not, re-arrange the equations so that it becomes diagonally dominant and hence solve the system of simultaneous linear equation by Gauss sidle Method. -100y + 130z = 230, -40x + 150y - 100z = 0,60x - 40y = 200. [7.78, 6. 67, 6. 90]	Dec-12
н	Que. 12	Solve the following system of equations using Gauss-Seidel method correct up to three decimal places. 60x - 4y + 6z = 150; $2x + 2y + 18z = 30$; $x + 17y - 2z = 48[2.580, 2.798, 1.069]$	Dec-13
Т	Que. 13	State diagonal dominant property .Using Gauss-seidel method solve 6x + y + z = 105; $4x + 8y + 3z = 155$; $5x + 4y - 10z = 65[15, 10, 5]$	May-15

8. Linear Algebric Equation

PAGE | 69

Т	Que. 14	By gauss Seidel method solve the following system up to six iteration $12x_1 + 3x_2 - 5x_3 = 1$; $x_1 + 5x_2 + 3x_3 = 28$; $3x_1 + 7x_2 + 13x_3 = 76$ Use initial condition $(x_1 x_2 x_3) = (1 \ 0 \ 1)$. [1,3,4]	May-15
Н	Que. 15	By gauss Seidel method solve the following system 2x + y + 6z = 9; $8x + 3y + 2z = 13$; $x + 5y + z = 7[1, 1, 1]$	May-15
Н	Que. 16	State the Direct and iterative methods to solve system of linear equations. Using Gauss-Seidel method ,solve $2x_1 - x_2 = 7$; $-x_1 + 2x_2 - x_3 = 1$; $-x_2 + 2x_3 = 1$ [5. 3125, 4. 3125, 2. 6563]	Dec-15

9. Roots Of Non-Linear Equation

SR.NO.	TOPIC NAME
1	Bisection Method
2	Secant Method
3	Regula-Falsi Method (False Position Method)
5	Newton-Raphson Method

Bisection Method

✓ f(x) = 0

✓ If f(a) > 0 and f(b) < 0, Where a and b are consecutive integer, then

$$\begin{aligned} x_1 &= \frac{a+b}{2} \\ \checkmark & \text{Check } f(x_1) > 0 \text{ OR } f(x_1) < 0. \\ \checkmark & \text{If } f(x_1) > 0, \text{then } x_2 = \frac{x_1+b}{2} \\ & \text{OR} \\ & \text{If } f(x_1) < 0, \text{then we find } x_2 = \frac{a+x_1}{2}. \\ \checkmark & \text{Check } f(x_2) > 0 \text{ OR } f(x_2) < 0. \\ \checkmark & \text{If } f(x_1) > 0, f(x_2) > 0 \text{ then } x_3 = \frac{x_2+b}{2} \text{ OR } f(x_1) < 0, f(x_2) > 0 \text{ then } x_3 = \frac{x_2+x_1}{2} \\ & \text{OR} \\ & \text{If } f(x_1) > 0, f(x_2) < 0 \text{ then } x_3 = \frac{x_1+x_2}{2} \text{ OR } f(x_1) < 0, f(x_2) < 0 \text{ then } x_3 = \frac{a+x_2}{2} \end{aligned}$$

Processing like this when latest two consecutive values of x are not same.

С	Que.1 .	Find the positive root of $x = \cos x$ correct up to three decimal places by bisection method.	Jun-10
		[0.739]	
		Solve x = cosx by Bisection method correct up to two decimal	
Н	Que.2	places.	Jun-14
		[0.75]	
		Explain bisection method for solution of equation. Using this	
6		method find the approximate solution $x^3 + x - 1 = 0$ of	Dec-13
C	Que.3	correct up to three decimal points.	
		[0.683]	
		Perform the five iterations of the bisection method to obtain a	Nov-10
Т	Que.4	root of the equation $f(x) = \cos x - xe^x = 0$.	
		[0.53125]	
	Que.5	Find root of equation $x^3 - 4x - 9 = 0$, using the bisection	
Т		method in four stages.	Jun-11
		[2.6875]	

9. Roots Of Non-Linear Equation

PAGE | 72

Н	Que.6	Perform the five iteration of the bisection method to obtain a root of the equation $x^3 - x - 1 = 0$.	Nov-11
		[1.34375]	
		Find the negative root of $x^3 - 7x + 3 = 0$ bisection method	Jun-12
C	Que.7	up to three decimal place.	Jun 12
		[-2.839]	
		Find a real root of the following equation by bisection method	
		a) $e^x - 2\cos x = 0$	
Н	Que.8	b) $x^3 - 9x + 1 = 0$	
		c) $x\log_{10^x} - 1.2 = 0$ (up to four stage)	
		[0.6931, 0.1113, 2.6875]	
		Use bisection method to find a root of equation	
Т	Que.9	$x^3 + 4x^2 - 10 = 0$ in the interval [1,2].Use four iteration.	Dec-12
		[1.3125]	
		Perform three iterations of Bisection method to obtain root of	
Н	Que.10	the equation $2 \sin x - x = 0$.	May-15
		[1.875]	
		Explain bisection method for solving an equation $f(x) = 0$.Find	
_	0 11	the real root of equation $x^2 - 4x - 10 = 0$ by using this	Dec-15
T	Que.11	method correct to three decimal places.	500 15
		[5.742]	

Secant Method

✓ f(x) = 0

✓
$$x_{n+1} = x_n - \left(\frac{x_n - x_{n-1}}{f(x_n) - f(x_{n-1})}\right) f(x_n); n = 1, 2, 3, ...$$

Processing like this when latest two consecutive values of x are not same.

Explanation:

Approximate the graph of y = f(x) by Secant Line determined by two initial points $[x_0, f(x_0)]$ and $[x_1, f(x_1)]$, as shown in figure.

Define x_2 to be the point of intersection of the line(secant) through these two points; then figure shoes that x_2 will be the closer x than either x_0 or x_1 . Using the slope formula with secant line, we have

$$m = \frac{f(x_1) - f(x_0)}{x_1 - x_0} \dots (1)$$

$$m = \frac{f(x_1) - f(x_2)}{x_1 - x_2} = \frac{f(x_1) - 0}{x_1 - x_2} \dots (2)$$

By Eq. (1) & (2),
$$\frac{f(x_1) - f(x_0)}{x_1 - x_0} = \frac{f(x_1) - 0}{x_1 - x_2}$$

$$\Rightarrow x_1 - x_2 = \frac{f(x_1)(x_1 - x_0)}{f(x_1) - f(x_0)}$$

$$\Rightarrow x_2 = x_1 - \frac{f(x_1)(x_1 - x_0)}{f(x_1) - f(x_0)}$$

Using x_1 and x_2 , repeat this process to obtain x_3 etc.

The general term is given by

$$x_{n+1} = x_n - \left(\frac{x_n - x_{n-1}}{f(x_n) - f(x_{n-1})}\right) f(x_n); n = 1, 2, 3, ...$$

Regula-Falsi Method (False Position Method)

$$\checkmark f(\mathbf{x}) = 0.$$

✓ If $f(x_0) \cdot f(x_1) < 0$, Where x_0 and x_1 are consecutive integer, then we find

$$x_2 = \frac{x_1 f(x_0) - x_0 f(x_1)}{f(x_0) - f(x_1)}$$

- ✓ Check $f(x_2) < 0$ or $f(x_2) > 0$.
- ✓ If $f(x_2) \cdot f(x_1) < 0$, then we find

$$x_{3} = \frac{x_{1}f(x_{2}) - x_{2}f(x_{1})}{f(x_{2}) - f(x_{1})}$$
OR

✓ If $f(x_2) \cdot f(x_0) < 0$, then we find

$$x_3 = \frac{x_0 f(x_2) - x_2 f(x_0)}{f(x_2) - f(x_0)}$$

Processing like this when latest two consecutive values of x are not same.

С	Que.1	Find the positive solution of $f(x) = x - 2sinx = 0$ by the secant method, starting form $x_0 = 2, x_1 = 1.9$. [1.8955]	Nov-10 Jun-14
Т	Que.2	Derive Secant method and solve $xe^x - 1 = 0$ correct up to three decimal places between 0 and 1. [0.567]	Jun-12

Н	Que.3	Find the real root of the following by secant method. a) $x^2 - 4x - 10 = 0$ (using $x_0 = 4, x_1 = 2$,upto six iteration) b) $x^3 - 2x - 5 = 0$ (using $x_0 = 2, x_1 = 3$, upto four iteration) [5.7411, 2.0928]	
Н	Que.4	Use Secant method to find the roots of $\cos x - xe^x = 0$ correct upto 3 decimal places of decimal. [0.518]	May-15
Т	Que.5	Find smallest positive root of an equation $x - e^{-x} = 0$ using Regula Falsi method correct to four significant digits. [0.6065]	May-15
С	Que.6	Apply False Position method to find the negative root of the equation $x^3 - 2x + 5 = 0$ correct to four decimal places. [-2.0946]	May-15
С	Que.7	Find a root of the equation $x^3 - 4x - 9 = 0$ using False-position method correct up to three decimal. [2.7065]	Dec-15
н	Que.8	Explain False position method for finding the root of the equation $f(x) = 0$.Use this method to find the root of an equation $x = e^{-x}$ correct up to three decimal places. [0.567]	Dec-15
Н	Que.9	Using method of False-position, compute the real root of the equation $x \log x - 1.2 = 0$ correct to four decimals. [2.74021]	Dec-15

Newton-Raphson Method (Newton's Method)

- $\checkmark f(x) = 0$
- ✓ $f(a) \cdot f(b) < 0$
- ✓ $x_0 = a$ when |f(a)| < |f(b)| OR $x_0 = b$ when |f(b)| < |f(a)|.

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}; n = 0,1,2,3 ...$$

Where $f'(x_n) \neq 0$

Processing like this when latest two consecutive values of x are not same.

Explanation:

Le x_1 be the root of f(x) = 0 and x_0 be an approximation to x_1 . If $h = x_1 - x_0$, then by Taylor's Series,

$$f(x_0 + h) = f(x_0) + h f'(x_0) + \frac{h^2}{2!} f''(x_0) + \cdots$$

Since, $x_1 = x_0 + h$ is root. $f(x_1) = f(x_0 + h) = 0$

If h is chosen too small enough, then we can neglect 2^{nd} , 3^{rd} and higher powers of h. We have,

$$0 = f(x_0) + h f'(x_0) \Longrightarrow h = -\frac{f(x_0)}{f'(x_0)} ; f'(x_0) \neq 0.$$

Suppose that, $x_1 = x_0 + h$ be the better approximation.

$$\Rightarrow \mathbf{x}_1 = \mathbf{x}_0 - \frac{\mathbf{f}(\mathbf{x}_0)}{\mathbf{f}'(\mathbf{x}_0)}$$

By repeating the process,

$$\Rightarrow x_2 = x_1 - \frac{f(x_1)}{f'(x_1)}$$
$$\Rightarrow x_3 = x_2 - \frac{f(x_2)}{f'(x_2)}$$

In general,

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}; n = 0, 1, 2, 3 \dots$$

Where $f'(x_n) \neq 0$

This is called Newton-Raphson Formula.

Note

If the function is linear then N-R method has to be failed.

Find the iterative formula for \sqrt{N} and $\frac{1}{N}$ by N-R method. Formula for \sqrt{N}

$$x = \sqrt{N} \implies x^2 - N = 0 \implies f(x) = x^2 - N$$

 $\implies f'(x) = 2x$

By N-R formula,

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$$
$$= x_n - \frac{x_n^2 - N}{2x_n} = \frac{2x_n^2 - x_n^2 + N}{2x_n}$$
$$= \frac{x_n^2 + N}{2x_n} = \frac{1}{2} \left(x_n + \frac{N}{x_n} \right)$$

Formula for $\frac{1}{N}$

$$x = \frac{1}{N} \Longrightarrow \frac{1}{x} - N = -0 \Longrightarrow f(x) = \frac{1}{x} - N$$

$$\Rightarrow$$
 f'(x) = $-\frac{1}{x^2}$

By N-R formula,

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)} = x_n - \frac{\frac{1}{x_n} - N}{-\frac{1}{x_n^2}} = x_n + \left(\frac{1}{x_n} - N\right) x_n^2 = 2x_n - Nx_n^2$$

$$\mathbf{x}_{n+1} = \mathbf{x}_n(2 - \mathbf{N}\mathbf{x}_n)$$

С	Que.1	Derive the Newton Raphson iterative scheme by drawing appropriate figure.	Nov-10 May-15
с	Que.2	Explain Newton's method for solving equation $f(x) = 0$. Apply this method to find the approximate solution of $x^3 + x - 1 = 0$ correct up to three decimal. [0.682]	Jun-13
Н	Que.3	Using Newton-Raphson method, find a root of the equation $x^3 + x - 1 = 0$ correct to four decimal places. [0.6823]	Jun-14
Т	Que.4	Find the positive root of $x = \cos x$ correct up to three decimal places by N-R method. [0.739]	Jun-11
Т	Que.5	Find to four decimal places, the smallest root of the equation $\sin x = e^{-x}$ Using the N-R starting with $x_0 = 0.6$. [0.5885]	Dec-11
С	Que.6	Obtain Newton-Raphson formula from Taylor's theorem.	Jun-12
С	Que.7	Find a root of $x^4 - x^3 + 10x + 7 = 0$ correct up to three decimal places between $a = -2$ & $b = -1$ by N-R method. [-1.454]	Jun-12
Т	Que.8	Find a zero of function $f(x) = x^3 - \cos x$ with starting point $x_0 = 1$ by NR Method could $x_0 = 0$ be used for this problem ? [0.8655]	Dec-12
Т	Que.9	Discuss the rate of convergence of NR Method.	Jun-12
с	Que.10	Find an iterative formula to find \sqrt{N} (N is a positive number) and hence find $\sqrt{5}$. [2.2361]	Jun-10
Н	Que.11	Explain Newton's method for solving equation $f(x) = 0$. Apply this method to Find an iterative formula to find \sqrt{N} and hence find $\sqrt{7}$ Correct up to three decimal points. [2.646]	Dec-13
Т	Que.12	Set up a Newton iteration for computing the square root x of a given positive number c and apply it to $c = 2$. [1.4142]	Nov -10

9. Roots Of Non-Linear Equation

		Find an iterative formula to find \sqrt{N} .(Where N is a positive number).	
Η	Que.13	Hence find $\sqrt{27}$.	
		[5.1962]	
		Find a real root by N-R method.	
		a) $x^3 - 3x - 5 = 0$	
Η	Que.14	b) $x = e^{-x}$ (up to three decimal)	
	-	c) $3x - \cos x - 1 = 0$ (up to three decimal)	
		[2. 2790, 0. 567, 0. 607]	
		Find an iterative formula to find $\frac{1}{N}$ (Where N is positive number) and	
С	Que.15	hence evaluat-e $\frac{1}{3}$, $\frac{1}{19}$, $\frac{1}{23}$.	
		³ ¹⁹ ²³ [0.333, 0.0526, 0.0435]	
Н	• • • •	Derive an iterative formula to find \sqrt{N} hence find approximate value	Dec-14
п	Que.16	of $\sqrt{65}$ and $\sqrt{3}$, correct up to three decimal places.	Dec II
		[8.062, 1.732]	
	Que.17	Derive an iterative formula for finding cube root of any positive	
С		number using Newton Raphson method and hence find approximate	May-15
	Queil	value of $\sqrt[3]{58}$.	-
		[3.8708]	
		Using Newton-Raphson method find a root of the equation $xe^x = 2$	
Η	Que.18	Correct to three decimal places.	Dec-15
		[0.518]	
		Find the $\sqrt{10}$ correct to three decimal places by using Newton-	
Η	Que.19	Raphson iterative method.	Dec-15
		[3.1623]	
		Use Newton-Raphson method to find smallest positive root of $f(x) =$	
Т	Que.20	$x^3 - 5x + 1 = 0$ correct to four decimals.	Dec-15
		[0.20164]	

- ✓ Given A = 2×2 matrix or 3×3 matrix.
- ✓ We take initial vector x_0 then find second vector x_1 by A $x_0 = \lambda x_1$.
- $\checkmark \quad \text{Find } x_2 \text{ by A } x_1 = \lambda x_2.$
- ✓ Processing like this when latest two consecutive values of X are not same.
- ✓ Second Eigen value = Trace of matrix A first Eigen value. (for only 2×2)

Rayleigh Quotient Method

- \checkmark Starting with an arbitrary vector x_0 we form the sequence of vectors.
- $\checkmark \quad \mathbf{x}_1 = \mathbf{A}\mathbf{x}_0 \text{ , } \mathbf{x}_2 = \mathbf{A}\mathbf{x}_1 \text{ , } \dots \text{ , } \mathbf{x}_{k+1} = \mathbf{A}\mathbf{x}_k.$
- ✓ Obtain the Rayleigh quotients by $q_k = \frac{x'_k x'_{k+1}}{x'_k \cdot x'_k}$.

Note

- Rayleigh quotient method is used to find the dominant eigenvalue of a real symmetric matrix.
- ✓ The q_k are scalars, Since it is the ratio of two scalar products.

н	Que.1	Use power method to find the largest of Eigen values of the matrix $A = \begin{bmatrix} 4 & 2 \\ 1 & 3 \end{bmatrix}$. Perform four iterations only. [4.91]	Nov-10
С	Que.2	Determine the largest eigenvalues of matrix of $A = \begin{bmatrix} -1 & 1 & 4 \\ 10 & 1 & 1 \\ 3 & 1 & 1 \end{bmatrix}$ by power method. [5.78]	Jun-12
н	Que.3	Find the largest eigen value of $A = \begin{bmatrix} 2 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 2 \end{bmatrix}$ by power method. [3.4142]	May-15
н	Que.4	Determine the largest eigenvalues of matrix of $A = \begin{bmatrix} 1 & 6 & 1 \\ 1 & 2 & 3 \\ 0 & 0 & 0 \end{bmatrix}$ by power method. [4]	Dec-15
н	Que.5	Determine the largest eigenvalues of matrix of $A = \begin{bmatrix} -1 & -3 & 2 \\ 4 & 4 & -1 \\ 6 & 3 & 5 \end{bmatrix}$ by power method. [7.184]	Dec-15

10. Iterative Methods for Eigen Value

Н	Que.6	Determine the largest eigen value of $A = \begin{bmatrix} 1 & -3 & 2 \\ 4 & 4 & -1 \\ 6 & 3 & 5 \end{bmatrix}$ by Power method. [6.98]	Jun-14
С	Que.7	Choosing $x_0 = [1,1,1]^T$ writing $x_{i+1} = Ax_i$ & assigning $x_3 = x, x_4 = y$. Apply the power method to find Eigen value of matrix A, compute the Rayleigh quotient & an error bound at this stage, where $A = \begin{bmatrix} 2 & -1 & 1 \\ -1 & 3 & 2 \\ 1 & 2 & 3 \end{bmatrix}$. [4. 99, 4. 97, 0. 02]	Dec-12
н	Que.8	By Rayleigh quotient method find the dominant Eigen value of $A = \begin{bmatrix} 5 & 4 \\ 4 & 3 \end{bmatrix}.$ [8.12]	
н	Que.9	Find the dominant Eigen value of $A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$ by power method andhence find the other Eigen value also. Verify your results by any othermatrix theory. $\begin{bmatrix} 5.38, -0.38, 5.37 \end{bmatrix}$	Jun-10
С	Que.10	By Rayleigh quotient method find the dominant Eigen value of $A = \begin{bmatrix} 10 & 7 & 8 \\ 7 & 5 & 6 \\ 8 & 6 & 10 \end{bmatrix}.$ [22.76]	
н	Que.11	Use power method to find the largest of Eigen values of the matrix $A = \begin{bmatrix} 3 & -5 \\ -2 & 4 \end{bmatrix}.$ [6.7]	Jun-11
н	Que.12	Find the dominant Eigen value of $A = \begin{bmatrix} 2 & 3 \\ 5 & 4 \end{bmatrix}$ by power method. [7.00]	Nov-11
C	Que.13	Find numerically smallest Eigen value of the given matrix using power method, correct up to three decimal places. $\begin{bmatrix} -15 & 4 & 3\\ 10 & -12 & 6\\ 20 & -4 & 2 \end{bmatrix}$. [largest eigen value = 0. 20, smallest eigen value = 5]	Dec-14

Page | 79

SR. NO.	TOPIC NAME
1	Picard's Method
2	Taylor 's Method
3	Euler's Method (R-K 1 st Order Method)
4	Modified Euler's Method
5	Improved Euler's Method (Heun's Method OR Runge-Kutta 2 nd Order Method)
6	Runge-Kutta 4 th Order Method

Picard's Method

$$\checkmark \text{ If } \frac{dy}{dx} = f(x, y); y(x_0) = y_0$$

✓ Picard's formula

$$y_n = y_0 + \int_{x_0}^{x} f(x, y_{n-1}) dx$$
; n = 1,2,3, ...

Note

- $\checkmark~$ We stop the process, When $y_n=y_{n-1},$ up to the desired decimal places.
- ✓ This method is applicable only to a limited class of equations in which successive integrations can be performed easily.

С	Que 1.	Using Picard's method solve $\frac{dy}{dx} - 1 = xy$ with initial condition $y(0) = 1$, compute $y(0.1)$ correct to three decimal places. [$y(0.1) = 1.105$]	
Т	Que 2.	Solve $\frac{dy}{dx} = 3 + 2xy$. Where y(0) = 1, for x = 0.1 by Picard's method. [y(0.1) = 1.3121]	Jun-12
Т	Que 3.	Obtain Picard's second approximation solution of the initial value problem $\frac{dy}{dx} = x^2 + y^2$ for $x = 0.4$ correct places, given that $y(0) = 0$. [$y(0.4) = 0.0214$]	
н	Que 4.	Using Picard's method solve $\frac{dy}{dx} = x + y^2$, $y(0) = 1$. $\left[y_2 = 1 + x + \frac{3}{2}x^2 + \frac{2}{3}x^3 + \frac{x^4}{4} + \frac{x^5}{20} \right]$	

Taylor Series

- ✓ If $\frac{dy}{dx} = f(x, y); y(x_0) = y_0$ ✓ Taylor's series expansion

$$y(x) = y(x_0) + \frac{(x - x_0)}{1!} y'(x_0) + \frac{(x - x_0)^2}{2!} y''(x_0) + \cdots$$

Putting $x = x_1 = x_0 + h \Rightarrow x - x_0 = h$
 $\therefore y(x_1) = y(x_0 + h) = y(x_0) + \frac{h}{1!} y'(x_0) + \frac{h^2}{2!} y''(x_0) + \cdots$
So, $y(x_1) = y_1 = y_0 + \frac{h}{1!} y_0' + \frac{h^2}{2!} y_0'' + \cdots$
 $\therefore y(x_n) = y_n = y_{n-1} + \frac{h}{1!} y'_{n-1} + \frac{h^2}{2!} y''_{n-1} + \frac{h^3}{3!} y'''_{n-1} + \cdots$

Where,
$$h = x_n - x_{n-1}$$
 ; $n = 1,2,3, ...$

Exercise-2

С	Que 1.	Use Taylor's series method to solve $\frac{dy}{dx} = x^2y - 1$, $y(0) = 1$. Also find $y(0.03)$. [y(0.03) = 0.9700]	Dec-10
Т	Que 2.	Using Taylor series method, find correct four decimal place, the value of y(0.1), given $\frac{dy}{dx} = x^2 + y^2$ and y(0) = 1. [y(0.1) = 1.1111]	Jun-11
С	Que 3.	Solve the Ricatti equation $y' = x^2 + y^2$ using the Taylor's series method for the initial condition $y(0) = 0$. Where $0 \le x \le 0.4$ and $h = 0.2$. [y(0.2) = 0.0027, y(0.4) = 0.0214]	
н	Que 4.	Using Taylor series method, find y(0.1) correct to four decimal places, if y(x) satisfies $\frac{dy}{dx} = x - y^2$, y(0) = 1. [y(0.1) = 0.9138]	
н	Que 5.	Evaluate y(0.1) correct to four decimal places using Taylor's series method if $\frac{dy}{dx} = y^2 + x$, y(0) = 1. [y(0.1) = 1.116]	May-15
Т	Que 6.	Using Taylor's series method ,find y(1.1) correct to four decimal places, given that $\frac{dy}{dx} = xy^{\frac{1}{3}}$, y(1) = 1. [y(1.1) = 1.1068]	Dec-15

Euler's Method (RK 1st order method)

- $\checkmark \quad \text{If } \frac{dy}{dx} = f(x, y); y(x_0) = y_0$
- ✓ Euler's Formula

$$y_{n+1} = y_n + h f(x_n, y_n); n = 0, 1, 2, ...$$

Where,
$$h = x_n - x_{n-1}$$
; $n = 1,2,3, ...$

Explanation:

Let [a, b] be the interval over which we want to find the solution of

$$\frac{dy}{dx} = f(x, y)$$
; a < x < b; y(x₀) = y₀ ... (1)

A set of points $\{(x_n,y_n)\}$ are generated which are used for an approximation [i. e. $y(x_n)=y_n]$

For convenience, we divide [a, b] into n equal subintervals.

 \Rightarrow x_n = x₀ + nh ; n = 0,1,2, ...; where, h = $\frac{b-a}{n}$ is called the step size.

Now, y(x) is expand by using Taylor's series about $x = x_0$ as following

$$y(x) = y(x_0) + \frac{(x - x_0)}{1!} y'(x_0) + \frac{(x - x_0)^2}{2!} y''(x_0) + \frac{(x - x_0)^3}{3!} y'''(x_0) + \dots \dots (2)$$

We have, $\left[\frac{dy}{dx}\right]_{x=x_0} = y'(x_0) = f(x_0, y_0) = f(x_0, y(x_0))$

By Eq. (2),

$$y(x_1) = y(x_0) + \frac{(x_1 - x_0)}{1!} y'(x_0) + \frac{(x_1 - x_0)^2}{2!} y''(x_0) + \frac{(x_1 - x_0)^3}{3!} y'''(x_0) + \cdots$$

Take $h = x_1 - x_0$

$$y(x_1) = y(x_0) + \frac{h}{1!} f(x_0, y(x_0)) + \frac{(x_1 - x_0)^2}{2!} y''(x_0) + \frac{(x_1 - x_0)^3}{3!} y'''(x_0) + \cdots$$

If the step size is chosen too small enough, then we may neglect the second order term involving h^2 and get

$$y_1 = y(x_1) = y(x_0) + \frac{h}{1!}f(x_0, y(x_0)) = y_0 + hf(x_0, y_0)$$

Which is called Euler's Approximation.

The process is repeated and generates a sequence of points that approximate the solution curve y = y(x).

The general step for Euler's method is $y_{n+1} = y_n + h f(x_n, y_n)$; n = 0,1,2, ...

		0
Exe	rcis	e-3
1110		

С	Que 1.	Describe Euler's Method for first order ordinary differential equation.	Dec-10 Jun-12
С	Que 2.	Apply Euler's method to find the approximate solution of $\frac{dy}{dx} = x + y$ with $y(0) = 0$ and $h = 2$. Show your calculation up to five iteration. [$y_5 = 232$]	Jun-13

11. Numerical methods for O.D.E.

PAGE | 84

Т	Que 3.	Derive Euler's formula for initial value problem $\frac{dy}{dx} = f(x, y); y(x_0) = y_0$. Hence, use it find the value of y for $\frac{dy}{dx} = x + y; y(0) = 1$ when $x = 0.1, 0.2$ with step size $h = 0.05$. Also Compare with analytic solution. [Y(0, 1) = 1.1050, Y(0, 2) = 1.2311]	May-15
Т	Que 4.	Apply Euler's method to solve the initial value problem $\frac{dy}{dx} = x + y$, with $y(0) = 0$ with choosing $h = 0.2$ and compute $y_1, y_2, y_3 \dots y_5$ Compare your result with the exact solution. $[y_1 = 1, y_2 = 0.04, y_3 = 0.128, y_4 = 0.236, y_5 = 0.4883]$	
н	Que 5.	Using Euler's method ,find an approximate value of y corresponding to $x = 1$ given that $\frac{dy}{dx} = x + y$ and $y = 1$ when $x = 0$. [For $h = 0.25$, $y_4 = 2.8828$]	Jun -13
Т	Que 6.	Use Euler method to find y(1.4) given that $\frac{dy}{dx} = xy^{\frac{1}{2}}$, y(1) = 1. [y(1.4) = 1.4986]	Dec-10
Т	Que 7.	Use Euler method to find y(0.2) given that $\frac{dy}{dx} = y - \frac{2x}{y}$, y(0) = 1. (Take h = 0.1) [y(0.2) = 1.1918]	Jun-11
н	Que 8.	Use Euler method to obtain an approximate value of y(0.4) for the equation $\frac{dy}{dx} = x + y$, y(0) = 1 with h = 0.1. [y(0.4) = 1.5282]	Dec-11
С	Que 9.	Use the Euler's method, find $y(0.04)$ for the following initial value problem. $\frac{dy}{dx} = y$, $y(0) = 1$. Take first step size as h = 0.01. [$y(0.04) = 1.0406$]	
н	Que 10.	Explain Euler's method for solving first order ordinary differential equation. Hence use this method, find y(2) for $\frac{dy}{dx} = x + 2y$ with y(1) = 1. [y(2) = 5.75]	Dec-15
Т	Que 11.	Solve initial value problem $\frac{dy}{dx} = x\sqrt{y}$, $y(1) = 1$ and hence find $y(1.5)$ by taking $h = 0.1$ using Euler's method. [$y(1.5) = 1.6815$]	May-15
С	Que 12.	Given $\frac{dy}{dx} = \frac{y-x}{y+x}$ with initial condition $y = 1$ at $x = 0$; find y for $x = 1$ and $h = 0.25$ by Euler's method. [y(1) = 1.6227]	Dec-15
н	Que 13.	Use Euler's method to find an approximation value of y at x = 0.1 for the initial value problem $\frac{dy}{dx} = x - y^2$; y(0) = 1. [y(0.1) = 0.9133]	Dec-15

Modified Euler's Method

- ✓ If $\frac{dy}{dx} = f(x, y); y(x_0) = y_0$ ✓ Modified Euler's Formula

$$y_{n+1} = y_n + hf\left(x_n + \frac{h}{2}, y_n + \frac{h}{2}f(x_n, y_n)\right); n = 0, 1, 2, ...$$

Where, $h = x_n - x_{n-1}$; n = 1,2,3, ...

C	Que 1.	Oue 1. Using modified Euler's method solve $\frac{dy}{dx} = x^2 + y$ with the initial condition $y(0) = 1$ and compute $y(0.02), y(0.04)$. compare the answer with exact solution.					
				y(0.02)	y(0.04)		
			Modified Euler's	1.0202	1.0408		
			Exact solution	1.0202	1.0408		
Н	Que 2.	Using modified Euler's method solve $\frac{dy}{dx} = y - \frac{2x}{y}$ with the initial condition $y(0) = 1$ and compute $y(0.2)$, taking $h = 0.1$. [$y(0.2) = 1.1833$]					
Т	Que 3.	Using modified Euler's method to obtain $y(0.2), y(0.4)$ and $y(0.6)$ correct to three decimal places given that $\frac{dy}{dx} = y - x^2$ with initial condition $y(0) = 1$. [y(0.2) = 1.218, y(0.4) = 1.467, y(0.6) = 1.737]					

Improved Euler's Method (Heun's Method / R-K 2nd Order Method)

 $\checkmark \quad \text{If } \frac{dy}{dx} = f(x, y); y(x_0) = y_0$

✓ Improved Euler's Formula

$$y_{n+1} = y_n + \frac{h}{2} [f(x_n, y_n) + f(x_n + h, y_n + hf(x_n, y_n))]; n = 0, 1, 2, ...$$

Where, $h = x_n - x_{n-1}$; n = 1,2,3, ...

								dv					
		Using improved Euler's method solves $\frac{dy}{dx} = 1 - y$ with the initial											
		condition $y(0) = 0$ and tabulates the solution at $x = 0.1$, 0.2. Compare											
С	Que 1.	the answe									_	Nov-11	
Ľ	Que 1.									y(0.1)	y(0.2)	1100-11	
						Ι	mpro	ved I	Euler's	0.0950	0.1810		
						I	Exacts	solut	ion	0.0952	0.1813		
	Using improved Euler's method solves $\frac{dy}{dx} + 2xy^2 = 0$ with the initial								no initial				
								un					
			-			-	e y(1)) tak	lngh =	0.2 compa	re the		
		answer w					(0	4)	(0 ()	(0, 0)	(1)		
Η	Que 2.	-	_	y(0)	y(0		y(0 .	-	y (0 . 6)		y(1)	Jun-10	
		Improve	d	1	0.9	600	0.86	603	0.7350	0 0.6115	0.5033		
		Euler's		-									
		Exact		1	0.9	615	0.86	b 21	0.7353	3 0.6098	0.5000		
		solution		dv	21/								
		Given the	equa	tion dy	$=\frac{2y}{x}$;y(1	1) = 2	Esti	imate y(2) using H	eun's		
	Que 3.		method h	= 0.	25 and	com	pare	the re	sult	s with ex	act answe	rs.	
				y(1)	y (1	.25)	y (2	1.50)	y(1.75)	y (2)		
Т		Impro		2		3.1	000	4.	4433	6.0302	7.8608		
		d Eul	er's										
		Exact		2		3.1	250	4 .	5000	6.1250	8.0000		
		solut											
			Apply improved Euler method to solve the initial value problem $y' =$										
Т	Que 4.	$x + y$ with $y(0) = 0$ choosing $h = 0.2$ and compute y_1, y_2, y_3, y_4, y_5 . Compare your results with the exact solutions.							Dec-14				
	·												
											= 0.7027]		
		0								e approxim	ate value	Dec 10	
С	Que 5.	of y(0.2)	given	that $\frac{dy}{dx}$	at $\frac{dy}{dx} = x - y^2$ and $y(0) = 1$ and $h = 0.1$.					Dec-10 Dec-15			
	ĩ									[y(0.2)	= 0.8523]	Dec-15	
				10 1		4	, dv			1			
										e second o			
Η	Que 6.	method (i.e. Heun's method) to approximate y ,when $x = 1.2$ use step						Dec-12					
		size 0.1.								[(4 C)	0.040-7		
										y(1.2)	= 2.3135]		

Runge Kutta 4th Order Method

 $\checkmark \quad \text{If } \frac{dy}{dx} = f(x, y); y(x_0) = y_0$

✓ RK 4th Order Formula $y_{n+1} = y_n + \frac{1}{6}(K_1 + 2K_2 + 2K_3 + K_4)$

$$x_{n+1} = x_n + h$$
; $n = 0, 1, 2, ...$

Where,

$$K_1 = h f(x_n, y_n)$$

$$K_2 = h f\left(x_n + \frac{h}{2}, y_n + \frac{K_1}{2}\right)$$

$$K_3 = h f\left(x_n + \frac{h}{2}, y_n + \frac{K_2}{2}\right)$$

$$K_4 = h f(x_n + h, y_n + K_3)$$

		-	
С	Que 1.	Write formula for Runge-Kutta method for order four.	Jun-13
н	Que 2.	a)Use the fourth-order Runge-Kutta to solve $10 \frac{dy}{dx} = x^2 + y^2$, $y(0) = 1$.Evaluate the value of y when $x = 0.1$. [$y(0.1) = 1.0101$] (b)Given $10 \frac{dy}{dx} = x^2 + y^2$, $y(0) = 1$.Using fourth -order Runge-Kutta method. Find $y(0.2) \& y(0.4)$ with $h = 0.1$. [$y(0.2) = 1.0206$, $y(0.4) = 1.0438$]	Dec-11 May -15
н	Que 3.	Apply Runge-Kutta method of fourth order to calculate y(0.2) given $\frac{dy}{dx} = x + y$, y(0) = 1 taking h = 0.1 [y(0.2) = 1.2428]	Jun-10 Jun-11 Dec-12
т	Que 4.	Use Runge–Kutta fourth order method to find y(1.1) given that $\frac{dy}{dx} = x - y$, y(1) = 1 and h = 0.05. [y(1.1) = 1.0053]	Dec-10
Т	Que 5.	Describe y(0.1) and y(0.2) Correct to four decimal places from $\frac{dy}{dx} = 2x + y$, y(0) = 1 use fourth order R-K method. [y(0.1) = 1.1155, y(0.2) = 1.2642]	Jun-12
С	Que 6.	Apply Runge-Kutta fourth order method, to find an approximate value of ywhen $x = 0.2$ in steps of 0.1, if $\frac{dy}{dx} = x + y^2$, given that $y = 1$ when $x = 0$. [y(0, 1) = 1.1165, y(0, 2) = 1.2736]	Jun -14

11. Numerical methods for O.D.E.

С	Que 7.	Using the Range-Kutta method of fourth order , find y at $x = 0.1$ given diff. equation $\frac{dy}{dx} = 3e^x + 2y$, $y(0) = 0$ by taking $h = 0.1$ and also compare the solution with exact solution.					
			R-K method Exact solution	y(0.1) 0.3487 0.348			
Т	Que 8.	Apply Runge-Kutta fourth order and y(0.4) given $\frac{dy}{dx} = y - \frac{2x}{y}$, y([y(0.2) =	Dec-15				
н	Que 9.	Solve initial value problem $\frac{dy}{dx} = 0.2$ for y(0.2) using Runge-Kutt	Dec-15				